Abstract
3D object modeling is a crucial issue for environment recognition. A difficult problem is how to separate objects from the background clutter. This paper presents a method of 3D object modeling and segmentation from images for specific object recognition. An object model is composed of edge points which are reconstructed using a structure-from-motion technique. A SIFT descriptor is attached to each edge point for object recognition. The object of interest is segmented by finding the edge points which co-occur in images with different backgrounds. Experimental results show that the proposed method creates detailed 3D object models successfully.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beis, J.S., Lowe, D.G.: Shape Indexing Using Approximate Nearest-Neighbour Search in High-Dimensional Spaces. In: Proc. of CVPR (1997)
Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. PAMI 8(6), 679–698 (1986)
Fischler, M., Bolles, R.: Random Sample Consensus: a Paradigm for Model Fitting with Application to Image Analysis and Automated Cartography. Communications ACM 24, 381–395 (1981)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: Proc. of CVPR 2006 (2006)
Lindberg, T.: Feature Detection with Automatic Scale Selection. Int. J. of Computer Vision 30(2), 79–116 (1998)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. of Computer Vision 60(2), 91–110 (2004)
Marszalek, M., Schmid, C.: Spatial Weighting for Bag-of-Features. In: Proc. of CVPR 2006 (2006)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350. Springer, Heidelberg (2002)
Mikolajczyk, K., Zisserman, A., Schmid, C.: Shape recognition with edge-based features. In: Proc. of BMVC 2003 (2003)
Parikh, D., Chen, T.: Unsupervised Identification of Multiple Objects of Interest from Multiple Images: dISCOVER. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844. Springer, Heidelberg (2007)
Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D Object Modeling and Recognition Using Affine-Invariant Patches and Multi-View Spatial Constraints. In: Proc. of CVPR 2003 (2003)
Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using Multiple Segmentations to Discover Objects and their Extent in Image Collections. In: Proc. of CVPR 2006 (2006)
Shi, J., Tomasi, C.: Good Features to Track. In: Proc. of CVPR 1994, pp. 593–600 (1994)
Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their location in images. In: Proc. of ICCV 2005 (2005)
Skrypnyk, I., Lowe, D.G.: Scene Modelling, Recognition and Tracking with Invariant Image Features. In: Proc. of ISMAR 2004 (2004)
Tomasi, C., Kanade, T.: Shape and Motion from Image Streams under Orthography: A Factorization Approach. Int. J. of Computer Vision 9(2), 137–154 (1992)
Tomono, M.: 3-D Object Map Building Using Dense Object Models with SIFT-based Recognition Features. In: Proc. of IROS 2006 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tomono, M. (2008). 3D Object Modeling and Segmentation Based on Edge-Point Matching with Local Descriptors. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)