Abstract
We present a novel algorithm that applies conics to realize reliable camera calibration. In particular, we show that a single view of two coplanar circles is sufficiently powerful to give a fully automatic calibration framework that estimates both intrinsic and extrinsic parameters. This method stems from the previous work of conic based calibration and calibration-free scene analysis. It eliminates many a priori constraints such as known principal point, restrictive calibration patterns, or multiple views. Calibration is achieved statistically through identifying multiple orthogonal directions and optimizing a probability function by maximum likelihood estimate. Orthogonal vanishing points, which build the basic geometric primitives used in calibration, are identified based on the fact that they represent conjugate directions with respect to an arbitrary circle under perspective transformation. Experimental results from synthetic and real scenes demonstrate the effectiveness, accuracy, and popularity of the approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, M., Davis, L.S.: Camera calibration using spheres: a semi-definite programming approach. In: Proc. of IEEE ICCV, pp. 782–789 (2003)
Bougnoux, S.: From projective to Euclidean space under any practical situation, a criticism of selfcalibration. In: Proc. 6th ICCV, pp. 790–796 (January 1998)
Caprile, B., Torre, V.: Using vanishing points for camera calibration. International journal of computer vision 4(2), 127–140 (1990)
Chen, Q., Hu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004)
Colombo, C., Comanducci, D., Del Bimbo, A.: Camera calibration with two arbitrary coaxial circles. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 265–276. Springer, Heidelberg (2006)
Dhome, M., Lapreste, J., Rives, G., Richetin, M.: Spatial localization of modeled objects of revolution in monocular perspective vision. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 475–485. Springer, Heidelberg (1990)
Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least-square fitting of ellipses. IEEE Trans. PAMI (June 1999)
Forsyth, D., et al.: Invariant descriptors for 3-D object recognition and pose. IEEE Trans. PAMI 13(10), 250–262 (1991)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University, Cambridge (2003)
Hartley, R., Kaucic, R.: Sensitivity of calibration to principal point position. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 433–446. Springer, Heidelberg (2002)
Ip, H., Chen, Y.: Planar rectification by solving the intersection of two circles under 2D homography. Pattern recognition 38(7), 1117–1120 (2005)
Kanatani, K.: Statistical analysis of focal-length calibration using vanishing points. IEEE Trans. Robotics and Automation 8(6), 767–775 (1992)
Kim, J., Gurdjos, P., Kweon, I.: Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE Trans. PAMI 27(4), 637–642 (2005)
Liebowitz, D., Criminisi, A., Zisserman, A.: Creating architectural models from images. In: EuroGraphics1999, vol. 18, pp. 39–50 (1999)
Luong, Q.T., Faugeras, O.: Self-calibration of a moving camera from point correspondences and fundamental matrices. IJCV 22(3), 261–289 (1997)
Press, W.H., et al.: Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (1997)
Semple, J.G., Kneebone, G.T.: Algebraic projective Geometry. Clarendon Press, Oxford (1998)
Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: a general algorithm, singularities, applications. In: Proc. CVPR, pp. 432–437 (1999)
Zhang, Z.: Camera calibration with one-dimensional objects. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 161–174. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Y., Ip, H., Huang, Z., Wang, G. (2008). Full Camera Calibration from a Single View of Planar Scene. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_78
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)