Skip to main content

Full Camera Calibration from a Single View of Planar Scene

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

We present a novel algorithm that applies conics to realize reliable camera calibration. In particular, we show that a single view of two coplanar circles is sufficiently powerful to give a fully automatic calibration framework that estimates both intrinsic and extrinsic parameters. This method stems from the previous work of conic based calibration and calibration-free scene analysis. It eliminates many a priori constraints such as known principal point, restrictive calibration patterns, or multiple views. Calibration is achieved statistically through identifying multiple orthogonal directions and optimizing a probability function by maximum likelihood estimate. Orthogonal vanishing points, which build the basic geometric primitives used in calibration, are identified based on the fact that they represent conjugate directions with respect to an arbitrary circle under perspective transformation. Experimental results from synthetic and real scenes demonstrate the effectiveness, accuracy, and popularity of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Davis, L.S.: Camera calibration using spheres: a semi-definite programming approach. In: Proc. of IEEE ICCV, pp. 782–789 (2003)

    Google Scholar 

  2. Bougnoux, S.: From projective to Euclidean space under any practical situation, a criticism of selfcalibration. In: Proc. 6th ICCV, pp. 790–796 (January 1998)

    Google Scholar 

  3. Caprile, B., Torre, V.: Using vanishing points for camera calibration. International journal of computer vision 4(2), 127–140 (1990)

    Article  Google Scholar 

  4. Chen, Q., Hu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Colombo, C., Comanducci, D., Del Bimbo, A.: Camera calibration with two arbitrary coaxial circles. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 265–276. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Dhome, M., Lapreste, J., Rives, G., Richetin, M.: Spatial localization of modeled objects of revolution in monocular perspective vision. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 475–485. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  7. Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least-square fitting of ellipses. IEEE Trans. PAMI (June 1999)

    Google Scholar 

  8. Forsyth, D., et al.: Invariant descriptors for 3-D object recognition and pose. IEEE Trans. PAMI 13(10), 250–262 (1991)

    Article  Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University, Cambridge (2003)

    MATH  Google Scholar 

  10. Hartley, R., Kaucic, R.: Sensitivity of calibration to principal point position. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 433–446. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Ip, H., Chen, Y.: Planar rectification by solving the intersection of two circles under 2D homography. Pattern recognition 38(7), 1117–1120 (2005)

    Article  MATH  Google Scholar 

  12. Kanatani, K.: Statistical analysis of focal-length calibration using vanishing points. IEEE Trans. Robotics and Automation 8(6), 767–775 (1992)

    Article  Google Scholar 

  13. Kim, J., Gurdjos, P., Kweon, I.: Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE Trans. PAMI 27(4), 637–642 (2005)

    Article  Google Scholar 

  14. Liebowitz, D., Criminisi, A., Zisserman, A.: Creating architectural models from images. In: EuroGraphics1999, vol. 18, pp. 39–50 (1999)

    Google Scholar 

  15. Luong, Q.T., Faugeras, O.: Self-calibration of a moving camera from point correspondences and fundamental matrices. IJCV 22(3), 261–289 (1997)

    Article  Google Scholar 

  16. Press, W.H., et al.: Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  17. Semple, J.G., Kneebone, G.T.: Algebraic projective Geometry. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  18. Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: a general algorithm, singularities, applications. In: Proc. CVPR, pp. 432–437 (1999)

    Google Scholar 

  19. Zhang, Z.: Camera calibration with one-dimensional objects. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 161–174. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Ip, H., Huang, Z., Wang, G. (2008). Full Camera Calibration from a Single View of Planar Scene. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics