Abstract
In this paper we present a new approach that uses local structural information to find correspondences between image and model contour information. For a monocular pose estimation scenario, the pose is computed by our purposed new variant of the ICP (iterative closest point) algorithm which combines Euclidean distance with structure. A local representation of 3D free-form contours is used to get the structural information in 3D space and in the image plane. Furthermore, the local structure of free-form contours is combined with local orientation and phase obtained from the monogenic signal. With this combination, we achieve a more robust correspondence search. Our approach was tested on synthetical and real data to compare the convergence and performance of our approach against the classical ICP approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araujo, H., Carceroni, R., Brown, C.: A Fully Projective Formulation to Improve the Accuracy of Lowes Pose-estimation Algorithm. Comput. Vis. Image Underst. 70(2), 227–238 (1998)
Benjemaa, R., Schmitt, F.: Fast Global Registration of 3d Sampled Surfaces using a Multi-z-buffer Technique. In: NRC 1997: Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Washington, DC, USA, pp. 113–120. IEEE Computer Society, Los Alamitos (1997)
Besl, P., McKay, N.: A Method for Registration of 3-d Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Chen, Y., Medioni, G.: Object Modelling by Registration of Multiple Range Images. Image Vision Comput. 10(3), 145–155 (1992)
Dorai, C., Weng, J., Jain, A.: Optimal Registration of Object Views using Range Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(10), 1131–1138 (1997)
Felsberg, M., Sommer, G.: The Monogenic Signal. IEEE Transactions on Signal Processing 49(12), 3136–3144 (2001)
Felsberg, M., Sommer, G.: The Monogenic Scalespace: A unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21(1), 5–26 (2004)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 4(1), 321–331 (1987)
Masuda, T., Sakaue, K., Yokoya, N.: Registration and Integration of Multiple Range Rmages for 3-d Model Construction. In: ICPR 1996: Proceedings of the 1996 International Conference on Pattern Recognition (ICPR 1996), Washington, DC, USA, vol. I, p. 879. IEEE Computer Society, Los Alamitos (1996)
Rosenhahn, B., Brox, T., Cremers, D., Seidel, H.: A Comparison of Shape Matching Methods for Contour Based Pose Estimation. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 263–276. Springer, Heidelberg (2006)
Rosenhahn, B., Perwass, C., Sommer, G.: Freeform Pose Estimation by using Twist Representations. Algorithmica 38, 91–113 (2004)
Rosenhahn, B., Sommer, G.: Pose Estimation in Conformal Geometric Algebra, part I: The Stratification of Mathematical Spaces. Journal of Mathematical Imaging and Vision 22, 27–48 (2005a)
Rosenhahn, B., Sommer, G.: Pose Estimation in Conformal Geometric Algebra, part II: Real-time Pose Estimation using Extended Feature Concepts. Journal of Mathematical Imaging and Vision 22, 49–70 (2005b)
Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP algorithm. In: Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling, Quebec City, Canada, pp. 145–152 (2001)
Shang, L., Jasiobedzki, P., Greenspan, M.: Discrete Pose Space Estimation to improve ICP-based Tracking. In: 3DIM 2005: Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling, Washington, DC, USA, pp. 523–530. IEEE Computer Society, Los Alamitos (2005)
Sommer, G.: Geometric Computing with Clifford Algebras. Springer, Heidelberg (2001)
Zhang, Z.: Iterative Point Matching for Registration of Free-form Curves and Surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chavarria, M.A., Sommer, G. (2008). Local Structure to Solve the Correspondence Search Problem in a Monocular Pose Estimation Scenario. In: Braz, J., Ranchordas, A., Araújo, H.J., Pereira, J.M. (eds) Computer Vision and Computer Graphics. Theory and Applications. VISIGRAPP 2007. Communications in Computer and Information Science, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89682-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-89682-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89681-4
Online ISBN: 978-3-540-89682-1
eBook Packages: Computer ScienceComputer Science (R0)