Skip to main content

Disparity Contours – An Efficient 2.5D Representation for Stereo Image Segmentation

  • Conference paper
Computer Vision and Computer Graphics. Theory and Applications (VISIGRAPP 2007)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 21))

Included in the following conference series:

  • 679 Accesses

Abstract

Disparity contours are easily computed from stereo image pairs, given a known background geometry. They facilitate the segmentation and depth calculation of multiple foreground objects even in the presence of changing lighting, complex shadows and projected video background. Not relying on stereo reconstruction or prior knowledge of foreground objects, a disparity contour based image segmentation method is fast enough for some real-time applications on commodity hardware. Experimental results demonstrate its ability to extract object contour from a complex scene and distinguish multiple objects by estimated depth even when they are partially occluded.

This research was carried out at the Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayer, S., Sawhney, H.S.: Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding. In: Int’l Conf. on Computer Vision, pp. 777–784 (1995)

    Google Scholar 

  2. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts and shadows in video streams. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1337–1342 (2003)

    Article  Google Scholar 

  3. Elder, J.H., Goldberg, R.M.: Ecological statistics of Gestalt laws for the perceptual organization of contours. Journal of Vision 2, 324–353 (2002)

    Article  Google Scholar 

  4. Elder, J.H., Krupnik, A., Johnston, L.A.: Contour grouping with prior models. IEEE Trans. Pattern Analysis and Machine Intelligence 25(25), 1–14 (2003)

    Google Scholar 

  5. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice in C, 2nd edn. Addison-Wesley, Reading (1997)

    Google Scholar 

  6. Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Machine Vision and Applications 12(1), 16–22 (2000)

    Article  Google Scholar 

  7. Ivanov, Y., Bobick, A., Liu, J.: Fast lighting independent background subtraction. Int’l Journal of Computer Vision 37(2), 199–207 (2000)

    Article  MATH  Google Scholar 

  8. Jepson, A.D., Black, M.J.: Mixture models for optical flow computation. In: Computer Vision and Pattern Recognition, pp. 760–761 (1993)

    Google Scholar 

  9. Kolmogorov, V.: Software (2001–2003), http://www.adastral.ucl.ac.uk/~vladkolm/software.html

  10. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: Computer Vision and Pattern Recognition, pp. 407–414 (2005)

    Google Scholar 

  11. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 82–96. Springer, Heidelberg (2002)

    Google Scholar 

  12. Lin, M.H., Tomasi, C.: Surfaces with occlusions from layered stereo. IEEE Trans. Pattern Analysis and Machine Intelligence 26(8), 1073–1078 (2004)

    Article  Google Scholar 

  13. Narayanan, P.J., Rander, P.W., Kanade, T.: Constructing virtual worlds using dense stereo. In: Int’l Conf. on Computer Vision, pp. 3–10 (1998)

    Google Scholar 

  14. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)

    Article  Google Scholar 

  15. Rittscher, J., Kato, J., Joga, S., Blake, A.: A probabilistic background model for tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 336–350. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  17. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Trans. Pattern Analysis and Machine Intelligence 25(7), 787–800 (2003)

    Article  Google Scholar 

  18. Sun, W., Cooperstock, J.R.: An empirical evaluation of factors influencing camera calibration accuracy using three publicly available techniques. Machine Vision and Applications 17(1), 51–67 (2006)

    Article  Google Scholar 

  19. Sun, W., Spackman, S.P.: Multi-object segmentation by stereo mismatch. Machine Vision and Applications (2008), doi:10.1007/s00138-008-0127-1

    Google Scholar 

  20. Torr, P.H., Szeliski, R., Anandan, P.: An integrated Bayesian approach to layer extraction from image sequences. IEEE Trans. Pattern Analysis and Machine Intelligence 23(3), 297–303 (2001)

    Article  Google Scholar 

  21. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Int’l Conf. on Computer Vision, pp. 255–261 (1999)

    Google Scholar 

  22. Wang, J.Y., Adelson, E.H.: Layered representation for motion analysis. In: Computer Vision and Pattern Recognition, pp. 361–366 (1993)

    Google Scholar 

  23. Weiss, Y., Adelson, E.H.: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. In: Computer Vision and Pattern Recognition, pp. 321–326 (1996)

    Google Scholar 

  24. Wren, C.R., Azarbayejani, A.J., Darrell, T.J., Pentland, A.P.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)

    Article  Google Scholar 

  25. Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: Int’l Symposium on 3D Data Processing Visualization and Transmission, pp. 24–36 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, W., Spackman, S.P. (2008). Disparity Contours – An Efficient 2.5D Representation for Stereo Image Segmentation. In: Braz, J., Ranchordas, A., Araújo, H.J., Pereira, J.M. (eds) Computer Vision and Computer Graphics. Theory and Applications. VISIGRAPP 2007. Communications in Computer and Information Science, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89682-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89682-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89681-4

  • Online ISBN: 978-3-540-89682-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics