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Abstract. This paper presents a video-based camera tracker that com-
bines marker-based and feature point-based cues in a particle filter frame-
work. The framework relies on their complementary performance. Marker-
based trackers can robustly recover camera position and orientation when
a reference (marker) is available, but fail once the reference becomes un-
available. On the other hand, feature point tracking can still provide
estimates given a limited number of feature points. However, these tend
to drift and usually fail to recover when the reference reappears. There-
fore, we propose a combination where the estimate of the filter is up-
dated from the individual measurements of each cue. More precisely, the
marker-based cue is selected when the marker is available whereas the
feature point-based cue is selected otherwise. Feature points are dynam-
ically found in scene and used for further tracking. Evaluations on real
cases show that the fusion of these two approaches outperforms the indi-
vidual tracking results. A critical aspect of the feature point-based cue is
to robustly recognise the feature points depite rotations of the camera. A
novelty of the proposed framework is the use of a rotation-discriminative
method to match feature points.

1 Introduction

Combination of tracking techniques has proven to be necessary for some camera
tracking applications. To reach a synergy, techniques with complementary perfor-
mance have first to be identified. Research on camera tracking has concentrated
on combining sensors within different modalities (e.g. inertial, acoustic, optic).
However, this identification is possible within a single modality: video track-
ers. Video-based camera tracking can be classified into two categories that have
compensated weaknesses and strengths: bottom-up and top-down approaches
[1]. For the first category, the six Degrees of Freedom (DoF), 3D position and
3D orientation, estimates are obtained from low-level 2D features and their 3D
geometric relation (such as homography, epipolar geometry, CAD models or pat-
terns), whereas for the second group, the 6D estimate is obtained from top-down
state space approaches using motion models and prediction. Marker-based sys-

tems [2] can be classified in the first group. Although they have a high detection
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rate and estimation speed, they still lack tracking robustness: the marker(s) must
be always visible thus limiting the user actions. In contrast to bottom-up ap-
proaches, top-down techniques such as filter-based camera tracking allow track
continuation when the reference is temporarily unavailable (e.g. due to occlu-
sions). They use predictive motion models and update them when the reference
is again visible [3, 4]. Their weakness is, in general, the drift during the absence of
a stable reference (usually due to features difficult to recognise after perspective
distortions). Filter-based camera tracking generally uses available data such as
feature points to correct the filtered state. The problem with feature points is to
reliably recognise them. Most techniques use descriptors based on the grey-level
or colour histogram or directly the intensity (templates) of their neighbourhood
[3, 4]. Feature points change their appearance at consecutive frames due to cam-
era motion. Therefore, methods that robustly recognise feature points despite
those changes have to be employed.

In this paper, we present a particle-filter based camera tracker. The main pur-
pose of this framework is to take advantage of the complementary performance
of two particular video-trackers. The system combines the measurements of a
marker-based cue (MC) and a feature point-based cue (FPC). The MC tracks a
square marker using its contour lines. The FPC tracks the feature points found
in the scene. The proposed framework extends the camera traking system pre-
sented in [5]. In this previous work, only the corners of the marker are used and
the method to recognise feature points is very sensible to rotations of the cam-
era. We propose a novel use of the rotation discriminative template matching
(RDTM) method described in [6]. More precisely, this method is employed here
to recognise feature points despite large rotations.

The paper is structured as follows. Section 2 describes similar works. The
techniques involved in the combination and the proposed tracker are presented
in Section 3. Several experiments and results are given in Section 4. Conclusions
and future research directions are finally discussed.

2 RELATED WORK

In hybrid tracking, systems that combine diverse tracking techniques have shown
that the fusion obtained enhances the overall performance [7].

The commonly developed fusions are inertial-acoustic and inertial-video [7].
Inertial sensors usually achieve better performance for fast motion. On the other
hand, in order to compensate for drift, an accurate tracker is needed for pe-
riodical correction. The advantage of using a bottom-up approach such as a
marker-based tracker is that drift is automatically reduced each time the detec-
tion occurs. Several works have combined marker-based approaches with inertial
sensors [8, 9]. [9] presented a square marker-based tracker that fuses its data
with an inertial tracker, in a Kalman filtering framework. Among the existing
marker-based trackers, two recent works, [10] and [11] stand out for their ro-
bustness to illumination changes and partial occlusions. [10] takes advantage of
machine learning techniques, and trains a classifier with a set of markers under
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different conditions of light and viewpoint. No particular attention is given to oc-
clusion handling. [11] uses spatial derivatives of grey-scale image to detect edges,
produce line segments and further link them into squares. This linking method
permits the localisation of markers even when the illumination is different from
one edge to the other. The drawback of this method is that markers can only
be occluded up to a certain degree. More precisely, the edges must be visible
enough to produce straight lines that cross at the corners.

However, little attention has been given to fusing diverse techniques from the
same modality. Several researchers have identified the potential of video-based
tracking fusion [1, 12]. Among these, [1] is the only reported work to fuse data
from a single camera. Their system switches between a model-based tracker and
a feature point-based tracker, similar to that of [4]. Nonetheless, this framework
takes limited advantage of the filtering framework and still needs the assistance
of an inertial sensor.

Recent works have addressed the problem of robustly identifying feature
points in camera tracking frameworks [13, 15]. In both cases, the application of
invariant descriptors for correct feature point matching has brought important
improvements. Sim et al. [13] use SIFT features [14], which have high scale and
rotation invariance enabling accurate tracking. However, the extraction and de-
scription of SIFT features makes the mapping of the scene more complicated.
Indeed, the data association of feature points between frames cannot be used in
a straightforward manner because the descriptors are scale invariant and hence
the features have many different scales. Therefore, the association is done by
traversing all the list of feature descriptors. This process has a large computa-
tional cost and the overall system runs at 11.9 seconds per frame. Chekhlov et

al. [15] propose a multi-resolution descriptor based also on SIFT. The approach
differs from [13] in that the extraction of feature points is done at a fixed scale.
In order to be scale invariant, several SIFT descriptors at different scales are
stored for each feature. At runtime, the scale is selected according to camera
pose and 3D feature position. Once the scale is selected, the validation can be
computed.

Those descriptors differ from the descriptor presented in [6] mainly in the
fact that rotation information is lost. We propose to exploit this information
during the filter update by associating it to the estimated camera rotation.

3 SYSTEM DESCRIPTION

This section describes the parameters of the filter, how the marker-based and
the feature point-based cues are obtained, as well as the procedure used to fuse
them in the filter.

3.1 Particle Filter equations

We target applications where the camera is hand-held or attached to the user’s
head. Under these circumstances, Kalman filter-based approaches although ex-
tensively used for ego motion tracking, lead to a non optimal solution because



4 D. Marimon and T. Ebrahimi

the motion is not white nor has Gaussian statistics [16]. To avoid the Gaussianity
assumption, we have chosen a camera tracking algorithm that uses a particle fil-
ter. More precisely, we have chosen a sample importance resampling (SIR) filter.
For more details on particle filters, the reader is referred to [17].

Each particle n in the filter represents a possible camera pose

Tn = [tX , tY , tZ , rotW , rotX , rotY , rotZ ]n, (1)

where t are the translations and rot is the quaternion for the rotation. T de-
termines the 3D relation of the camera with respect to the world coordinate
system. We have avoided adding the velocity terms so as not to overload the
particle filter (which would otherwise affect the speed of the system).

For each video frame, the filter follows two steps: prediction and update.
The probabilistic motion model for the prediction step is defined as follows. The
process noise (also known as transition prior p(Tn(k)|Tn(k−1)) ) is modelled with
a Uniform distribution centred at the previous state Tn(k−1) (frame k−1), with
variance q (process noise’s -also called system noise- vector of hyper-parameters).
The reason for this type of random walk motion model is to avoid any assumption
on the direction of the motion. This distribution enables faster reactivity to
abrupt changes. The propagation for the translation vector is

Tn(k)
∣∣
tX ,tY ,tZ

= Tn(k − 1)
∣∣
tX ,tY ,tZ

+ ut (2)

where ut is a random variable coming from the uniform distribution, particu-
larised for each translation axis. The propagation for the rotation is

Tn(k)
∣∣
rot

= urot × Tn(k − 1)
∣∣
rot

(3)

where × is a quaternion multiplication and urot is a quaternion coming from the
uniform distribution of the rotation components. In the update step, the weight
of each particle n is calculated using its measurement noise (likelihood)

wn = p(Y |Tn), (4)

where wn is the weight of particle n and Y is the measurement. The key role
of the combination filter is to switch between two sorts of likelihood depending
on the type of measurement that is used: MC or FPC. Once the weights are
obtained, these are normalised and the update step of the filter is concluded.
The corrected mean state T̂ is given by the weighted sum of Tn. T̂ is used as
output of the camera tracking system.

3.2 Marker-based Cue (MC)

We use the marker-based system provided by [18] to calculate the transformation
T between the world coordinate frame and that of the camera (3D position
and 3D orientation). As explained in Section 3.4, this transformation is the
measurement fed into the filter for update.
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Fig. 1: Square marker used for the MC.

At each frame, the algorithm searches for a square marker (see Figure 1)
inside the field-of-view (FoV). If a marker is detected, the transformation can be
computed. The detection process works as follows. First, the frame is converted
to a binary image and the black marker contour is identified. If this identification
is positive, the 6D pose of the marker relative to the camera (T ) is calculated.
This computation uses only the geometric relation of the four projected lines that
contour the marker in addition to the recognition of a non-symmetric pattern
inside the marker [18]. When this information is not available, no pose can be
calculated. This occurs in the following cases: markers are partially or completely
occluded by an object; markers are partially or completely out of the FoV; or
not all lines can be detected (e.g., due to low contrast).

3.3 Feature Point-based Cue (FPC)

In order to constrain the camera pose estimation, the back-projection of fea-
ture points in the scene can be used. For this purpose, both the 3D location of
the feature point P and the 2D back-projection p is needed. In homogeneous
coordinates,

p = K · [R|t] · P, (5)

where K is the calibration matrix (computed off-line), R is the rotation matrix
formed using the quaternion rot and t = [tX , tY , tZ ]T is the translation vector.

Natural feature points in unprepared environments appear in objects at un-
known locations. Hence, the 3D location of feature points in the world coordinate
frame is generally unavailable. However, the combination framework proposed
here admits a certain preparation of the environment, this is, a marker is avail-
able. Since the world coordinate frame is fixed to the marker and the real size of
the marker is known, the 3D location of any point in the marker is known. We
take advantage of this fact and propose to use the corners as feature points in
the scene.

Although we have proved in our previous work that these points provide a
reliable measurement for camera tracking [5], they might not always be avail-
able. For instance, because a corner is occluded by an object or it is outside of
the FoV. In this case, it is interesting to have other feature points to rely on.
As explained before, in order to constrain the camera pose, the 3D position of
a feature point must be available. However, the inverse procedure can also be
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done. Indeed, from Equation (5) one deduces that the 3D world coordinates of a
point can be computed if the camera pose [R|t] is known. Since the filter keeps
an estimate of this pose, it is possible to calculate the 3D position of feature
points. Once this location is computed, a new feature point can be added to the
map of feature points that constrain the camera pose. This process is detailed
in [19].

The intensity level and gradient information are chosen as a description of the
feature points, for further recognition. Each time a feature point is added to the
map the template of its neighbourhood is stored. At this time, rotated versions
of this template are generated. The orientation gradient is computed for each of
these versions and the information is summarised in a single robust orientation
histogram. The final descriptor of a feature point is composed by the histogram
and the rotated templates. The amount of rotated versions is proportional to
the number of bins in the histogram.

At runtime, the feature points in the map are searched in the video frame. A
region is defined around the estimated location of each feature point. Assume,
for the moment, that those regions are known. Each region is matched with
the corresponding descriptor. The result of this matching is a correlation score
together with a bin-wise estimated rotation, for each pixel inside the region. More
precisely, the result indicates which rotated version Θ(x, y) of the template gives
the highest correlation Ψ(x, y) at each pixel (x, y). Further details about the
descriptor and the RDTM process can be found in [6].

As explained in the next section, the set of correlation scores and estimated
rotations is the measurement fed into the filter for update. Each feature point
that is positively matched makes the filter converge to a more stable estimate.
Three points are necessary to robustly determine the six DoF. However, the filter
can be updated even with only one feature point. A reliable feature point might
be unavailable in the following situations: a point is occluded by an object; a
point is outside of the FoV; the region does not contain the feature point (due
to a bad region estimation); or the point is inside the region but no correlation
is beyond the threshold (e.g., because the viewpoint is drastically changed).

3.4 Cues combination

The goal of the system is to obtain a synergy by combining both cues. Individual
weaknesses previously described are thus lessened by this combination. Special
attention is given to the occlusion and illumination problems in the MC and the
drift in the FPC.

At initialisation, the value of all particles of the filter is set to the transfor-
mation estimated by the marker-based cue TMC .

As long as the the marker is detected, the system uses the MC measurement
to update the particle filter (Y =MC). The likelihood is modelled with a Cauchy
distribution centered at the measurement TMC

p(TMC |Tn) =
∏

i

ri
π · ((Tn,i − TMC,i)2 + r2i )

, (6)
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where r is the measurement noise and i indexes the elements of the vectors. This
particular distribution’s choice has its origin in the following reasoning. In the
resampling step of the filter, particles with insignificant weights are discarded.
A problem may arise when the particles lie on the tail of the measurement noise
distribution. The transition prior p(Tn(k)|Tn(k−1)) determines the region in the
state-space where the particles fall before their weighting. Hence, it is relevant
to evaluate the overlap between the likelihood distribution and the transition
prior distribution. When the overlap is small, the number of particles effectively
resampled is too small. Figure 2 shows an instance of overlapping region. It
must be pointed out that due to computing limits, some values fall to zero
even though their real mathematical value is greater than that (the support of
a Gaussian distribution is the entire real line). In the example of this figure,
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Fig. 2: Overlap between transition prior distribution and the likelihood distribution:
modelled with a Gaussian (no overlap) and with a Cauchy distribution (thick line).

there is no sufficient computed overlap for the Gaussian distribution (commonly
used), whereas the tail of the Cauchy distribution covers the necessary state-
space. Therefore, we have chosen a long-tailed density that better covers the
state-space, while still being a realistic measurement noise [20].

On the other hand, when the MC fails to detect the marker, the system
relies on the FPC (Y =FPC) and another likelihood is used. As a previous
step to looking for the new location of the feature points (see Section 3.3), it is
necessary to calculate the regions around the estimated location of each feature
point. For each feature point, all the back-projections given the transformations
Tn are computed (see Eq. 5). The region is the bounding box containing all these
back-projections. These bounding boxes are fed into the FPC and the matching
results are obtained in return. The weights can then be calculated. First, a set
of 2D coordinates is obtained by thresholding Ψ(x, y).

Sj =
{
[cx, cy]

∣∣Ψj(cx, cy) > thcorr

}
, (7)

where j indexes the feature points mapped from the scene. Second, for each
particle, a subset is kept with the points in Sj that are within a certain Euclidean
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distance from the corresponding back-projection [pn,x, pn,y]

Sn,j =
{
[cx, cy] ∈ Sj

∣∣dist(c, pn) < thdist

}
. (8)

Finally, the weight is computed. The weight of the particle n is proportional to
the correlation Ψj achieved in the subsets Sn,j . Furthermore, this is refined with
the orientationΘj estimated by the RDTM process. This orientation should have
a rough correspondence with the rotation of the camera about the Z axis. The
more perpendicular is the original template to the current pose of the camera,
the higher the chances of the estimated orientation being similar to the rotation
about the Z axis. We take advantage of this fact. Indeed, the weights are forced
to be proportional also to the difference between the orientation Θj and the
rotation around the Z axis of the corresponding particles’s state ψZ,n

wn = exp




L∑

j=1

∑

[x,y]∈Sn,j

Ψj(x, y) · exp−

(
(ψZ,n − ψ̂Z,j) −Θj(x, y) ·∆

α ·∆

)2


 ,

(9)
where L is the number of feature points, ∆ = 360/N is the quantisation step of

the orientation according to the number of bins N (see Section 3.3), ψ̂Z,j is the
rotation of the camera at the initialisation of the feature point, and α is a tunable
parameter. Weighting the particles according to the correlation gives already a
strong validation for the data association between feature points and the point in
the image plane where they lie. Reinforcing this validation with the orientation
permits to avoid confusion with points with high correlation but unexpected
orientation according to the camera’s pose. Therefore, α can be tuned to vary
this reinforcement of the data association. In our case, this parameter is fixed to
a high value (α = N/2) as the perpendicularity of the camera with respect to
the template of a feature point cannot be assured a priori. It is also possible to
make this parameter vary according to the angle of rotation in X and Y axes,
for instance α ∝

∑
|ψX,n − ψ̂X,j |+|ψY,n − ψ̂Y,j |. This option is not considered

for simplicity purposes.

As it can be seen, the likelihood for the FPC measurement is much less
straightforward to compute than the MC. Nevertheless, the weights can be cal-
culated independently of the number of feature points recognised whereas the
likelihood for the MC is available only if the marker is visible.

Algorithm 1 expresses the process followed by the combination. It is assumed
that the filter has been initialised at the first detection of the marker. The
description of the marker is stored in the pattern variable.

This filtering framework has several advantages. Combination through a filter
provides a continuous estimate which is free of jumps that disturb the user’s
interaction. Frameworks often fall into static solutions giving little opportunity
for shaping. The likelihood switching method proposed is generic enough to be
used with very different types of cues or sensors such as inertial.
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Algorithm 1 Combination procedure

loop

vframe← getVideoFrame()
marker← detectMarker( vframe )
if pattern.correspondsTo( marker ) then

TMC ← MC.calcTransformation( marker )
bT ← filter.updateFromMC( TMC )

else

reg ← filter.calcRegions()
for j = 1 to NumberOfFeaturePoints do

[Θj , Ψj ]← RDTM( reg , vframe, descriptorsj )
end for
bT ← filter.updateFromFPC( Θj=1...L , Ψj=1...L )

end if

filter.findNewFeaturePoints( vframe )
end loop

4 EXPERIMENTS

In order to assess the performance of the camera tracking system, we have per-
formed several experiments. Two sequences are used. The first one is generated
synthetically. The second one is recorded with a hand-held camera. For the first
one, the ground truth is known whereas for the second one a qualitative mea-
sure is used. When the camera position with respect to the world coordinate
frame is known, it is possible to add virtual objects at a 3D position in the
world coordinate space. This is generally known as Augmented Reality. If the
alignment between a virtual object and the real scene is fixed, the object should
move accordingly to the cameras motion as if it was placed in the real world.
A qualitative measure is found by observing how static a fixed virtual object is
with respect to the real world.

4.1 Evaluation of the combination of cues

An experiment is conducted to analyse the tracking performance in front of
occlusions of the marker. As stated before, one of our goals is to cope with the
loss of track of the MC when the marker is occluded. In our framework, tracking
can continue by using the FPC. Two techniques are compared in this case. On
the one hand, ARToolkit [18], which is equivalent to use the MC alone. On the
other hand, our framework combining MC and FPC.

Snapshots from several frames of the augmented sequence are shown in Fig. 3.

4.2 Evaluation of the RDTM for camera tracking

In [6], the RDTM method to recognise regions is described. This method is
tailored to match a template despite of a 2D rotation, as well as detect the
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(a) Snapshots of a manual occlusion.

(b) Snapshots of a manual occlusion.

(c) Snapshots while the marker is escaping the field of view.

Fig. 3: Experiment with occlusions. A virtual teapot is placed on the marker to show
correct alignment. When the teapot is red, the framework uses the MC, whereas when
it is green, the framework relies on the FPC.

rotation that the template has undergone. In this paper, experiments have shown
the accuracy of the method on several images rotated over the perpendicular
axis (2D rotations). We want to evaluate here the improvement brought by the
RDTMwhen compared to a simpler but commonly used method [3–5].

Two feature point-based camera trackers with different matching techniques
are compared. In the first one, the recognition is performed with the Normalised
Cross-Correlation (NCC) of the templates. In the second one, matching of feature
points is done with our RDTM method. The experiment is conducted with the
synthetic sequence.

Fig. 4 shows one instance of the absolute error of each axis of the compared
techniques. Matching with NCC fails as soon as a large rotation around the Z
axis occurs (around frame 50). As a consequence, this tracker looses all refer-
ences and starts to drift. On the other hand, the rotation-discriminative method
allows a continuous track of the feature points and hence accurate camera pose
estimation. Indeed, the Root Mean Square Error achieved for the Z axis is very
low: 0.79 degrees.

5 CONCLUSION

We have presented a combination of video-based camera trackers within a par-
ticle filter framework. The filter uses two cues provided by a marker-based ap-
proach and a feature point-based one. We introduce a novel use of a rotation-
discriminative template matching (RDTM) method for camera tracking.
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Fig. 4: Experiment with different feature point recognition methods. Comparison be-
tween NCC and RDTM. Absolute error of the translation and rotation in X,Y and Z
axes (Renens sequence).

Experiments show that the proposed combination produces a synergy. In par-
ticular we have shown robustness in front of occlusions of the marker. Moreover,
we have demonstrated the convenience of using the RDTM by comparison to
other commonly used template matching.

In our future research, we will focus on extending the application of the
RDTM to scale invariance by exploiting the knowledge of the estimated distance
between the camera and the feature points.
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