Skip to main content

Computational Intelligence in Radio Astronomy: Using Computational Intelligence Techniques to Tune Geodesy Models

  • Conference paper
Simulated Evolution and Learning (SEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5361))

Included in the following conference series:

  • 1498 Accesses

Abstract

In this paper a number of popular Computational Intelligence (CI) algorithms are used to tune Geodesy models, a radio astronomy problem. Several single and multiple objective variations of the Geodesy problem are examined with good results obtained using state-of-the-art CI algorithms. These novel applications are used to develop insights into methods for applying CI algorithms to unknown problem domains and to provide interesting solutions to the Geodesy models used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fomalont, E.B.: Astrometry and Geodesy. In: Taylor, G.B., Carilli, C.L., Perley, R.A. (eds.) Synthesis Imaging in Radio Astronomy II. Astronomical Society of the Pacific Conference Series, vol. 180, p. 463 (1999)

    Google Scholar 

  2. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Angus, D.: Population-based ant colony optimisation for multi-objective function optimisation. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS, vol. 4828, pp. 232–244. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  5. Angus, D.: Niching for Population-based Ant Colony Optimization. In: 2nd International IEEE Conference on e-Science and Grid Computing, Workshop on Biologically-inspired Optimisation Methods for Parallel and Distributed Architectures: Algorithms, Systems and Applications (2006)

    Google Scholar 

  6. Mahfoud, S.W.: Crowding and preselection revisited. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature 2 (PPSN2), pp. 27–36. North-Holland, Amsterdam (1992)

    Google Scholar 

  7. Mahfoud, S.W.: Niching methods for genetic algorithms. PhD thesis, University of Illinois (1995)

    Google Scholar 

  8. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI (1995)

    Google Scholar 

  9. Montgomery, J.: Alternative representations for the job shop scheduling problem in ant colony optimsation. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angus, D., Deller, A. (2008). Computational Intelligence in Radio Astronomy: Using Computational Intelligence Techniques to Tune Geodesy Models. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89694-4_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89693-7

  • Online ISBN: 978-3-540-89694-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics