Skip to main content

Markov Decision Processes with Arbitrary Reward Processes

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5323))

Included in the following conference series:

  • 1132 Accesses

Abstract

We consider a control problem where the decision maker interacts with a standard Markov decision process with the exception that the reward functions vary arbitrarily over time. We extend the notion of Hannan consistency to this setting, showing that, in hindsight, the agent can perform almost as well as every deterministic policy. We present efficient online algorithms in the spirit of reinforcement learning that ensure that the agent’s performance loss, or regret, vanishes over time, provided that the environment is oblivious to the agent’s actions. However, counterexamples indicate that the regret does not vanish if the environment is not oblivious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Computing 32(1), 48–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aumann, R.J.: Markets with a continuum of traders. Econometrica 32, 39–50 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P.: Dynamic programming and optimal control, 2nd edn., vol. 2. Athena Scientific (2001)

    Google Scholar 

  4. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic programming. Athena Scientific (1996)

    Google Scholar 

  5. Bobkov, S.G., Tetali, P.: Modified logarithmic Sobolev inequalities in discrete settings. Journal of Theoretical Probability 19(2), 289–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borkar, V.S., Meyn, S.P.: The O.D.E. method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control and Optimization 38(2), 447–469 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brafman, R.I., Tennenholtz, M.: R-max—a general polynomial time algorithm for near-optimal reinforcement learning. Journal of Machine Learning Research 3, 213–231 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  9. Crites, R.H., Barto, A.G.: An actor/critic algorithm that is equivalent to Q-learning. In: Advances in Neural Information Processing Systems, pp. 401–408 (1995)

    Google Scholar 

  10. Duffield, N.G., Massey, W.A., Whitt, W.: A nonstationary offered-load model for packet networks. Telecommunication Systems 16(3–4), 271–296 (2001)

    Article  MATH  Google Scholar 

  11. Even-Dar, E., Kakade, S., Mansour, Y.: Experts in a Markov decision process. In: NIPS, pp. 401–408 (2004)

    Google Scholar 

  12. Fudenberg, D., Kreps, D.M.: Learning mixed equilibria. Games and Economic Behavior 5(3), 320–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hannan, J.: Approximation to Bayes risk in repeated play. In: Contributions to the Theory of Games, vol. 3, pp. 97–139. Princeton University Press, Princeton (1957)

    Google Scholar 

  14. Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32(2), 151–178 (1998)

    Article  MATH  Google Scholar 

  15. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal of Computer and System Sciences 71(3), 291–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mannor, S., Shimkin, N.: The empirical Bayes envelope and regret minimization in competitive Markov decision processes. Mathematics of Operations Research 28(2), 327–345 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Merhav, N., Ordentlich, E., Seroussi, G., Weinberger, M.J.: On sequential strategies for loss functions with memory. IEEE Trans. Inf. Theory 48(7), 1947–1958 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shapley, L.: Stochastic games. PNAS 39(10), 1095–1100 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu, J.Y., Mannor, S., Shimkin, N.: Markov decision processes with arbitrarily varying rewards (Preprint, 2008), http://www.cim.mcgill.ca/~jiayuan/mdp.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, J.Y., Mannor, S., Shimkin, N. (2008). Markov Decision Processes with Arbitrary Reward Processes. In: Girgin, S., Loth, M., Munos, R., Preux, P., Ryabko, D. (eds) Recent Advances in Reinforcement Learning. EWRL 2008. Lecture Notes in Computer Science(), vol 5323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89722-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89722-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89721-7

  • Online ISBN: 978-3-540-89722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics