Skip to main content

Assessing the Accuracy of Spatiotemporal Epidemiological Models

  • Conference paper
Biosurveillance and Biosecurity (BioSecure 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5354))

Included in the following conference series:

Abstract

To demonstrate an approach that allows for the assessment of models and their accuracy, a numerical experiment was designed to generate a “control” data set and treated it as if it were “real” data. The open source spatiotemporal epidemiological modeler (STEM) was used to develop a control scenario depicting the spread of influenza in the state of Vermont; this scenario was then compared to three alternative models using such tools as root mean square differences and phase space analysis. This approach may prove helpful in responding to global pandemics and arriving at necessary policy decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hethcote, H.W.: The Mathematics of Infectious Diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bailey, N.T.: The Mathematical Theory of Infectious Diseases, 2nd edn. Charles Griffin and Co. Ltd., London (1975)

    MATH  Google Scholar 

  3. Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Widgren, S.: Graph Theory in Veterinary Epidemiology – Modelling an Outbreak of Classical Swine Fever. Thesis, Institution for Ruminant Medicine and Veterinary Epidemiology, Swedish University of Agricultural Sciences, Uppsala, Sweden (2004)

    Google Scholar 

  5. Myers, L.A., Newman, M.E.J., Martin, M., Schrag, S.: Applying Network Theory to Epidemics: Control Measures for Mycoplasma Pneumonia Outbreaks. Emerg. Infect. Dis. (2003), http://www.cdc.gov/ncidod/EID/vol9no2/02-0188.htm

  6. Ford, D.A., Kaufman, J.H., Eiron, I.: An Extensible Spatial and Temporal Epidemiological Modeling System. Int. J. Health Geogr. 5(4) (2006), http://www.ij-healthgeographics.com/content/5/1/4 , http://www.eclipse.org/ohf/components/stem/

  7. The Eclipse Foundation, http://www.eclipse.org/org/

  8. Schaffer, W.M., Bronnikova, T.V.: Parametric Dependence in Model Epidemics. J. Biol. Dynam. 1, 183–195 (2007)

    Article  MATH  Google Scholar 

  9. Olsen, L.F., Schaffer, W.M.: Chaos vs. Noisy Periodicity: Alternative Hypotheses for Childhood Epidemics. Science 249, 499–504 (1990)

    Article  Google Scholar 

  10. Ohkusa, Y., Sugawara, T.: Application of an Individual-Based Model with Real Data for Transportation Mode and Location to Pandemic Influenza. J. Infect. Chemother. 13(6), 280–389 (2007)

    Article  Google Scholar 

  11. Kuznetsov, Y., Piccardi, C.: Bifurcation Analysis of Periodic SEIR and SIR Epidemic Models. J. Math. Biol. 32, 109–121 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, M.Y., Muldowney, J.: Global Stability for the SEIR Model in Epidemiology. Math. Biosci. 125, 155–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, G., Liu, Z., Maa, Z.: Generalized Synchronization of Different Dimensional Chaotic Dynamical Systems. Chaos, Solitons & Fractals 32(2), 773–779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wilbur Smith Associates: Northeast CanAm Connections – Integrating the Economy and Transportation. Task force report (2007)

    Google Scholar 

  15. Vermont Agency of Transportation, Policy and Planning Division, Traffic Research Unit: Continuous Traffic Counter Grouping Study and Regression Analysis Based on 2007 Traffic Data (2008)

    Google Scholar 

  16. Wearing, H.J., Rohani, P., Keeling, M.J.: Appropriate Models for the Management of Infectious Diseases. PLoS Med. 2,7, 621 (2005)

    Google Scholar 

  17. Bootsma, M.C.J., Ferguson, N.M.: The Effect of Public Health Measures on the 1918 Influenza Pandemic in U.S. Cities. PNAS 104, 18 (2007)

    Article  Google Scholar 

  18. Arino, J., Frauer, F., van den Driessche, P., Watmough, J., Wu, J.: A Model for Influenza with Vaccination and Antiviral Treatment. J. Theor. Bio. 253(1), 118–130 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaufman, J.H., Conant, J.L., Ford, D.A., Kirihata, W., Jones, B., Douglas, J.V. (2008). Assessing the Accuracy of Spatiotemporal Epidemiological Models. In: Zeng, D., Chen, H., Rolka, H., Lober, B. (eds) Biosurveillance and Biosecurity . BioSecure 2008. Lecture Notes in Computer Science(), vol 5354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89746-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89746-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89745-3

  • Online ISBN: 978-3-540-89746-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics