Skip to main content

Fast Content-Based Mining of Web2.0 Videos

  • Conference paper
Advances in Multimedia Information Processing - PCM 2008 (PCM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5353))

Included in the following conference series:

  • 1447 Accesses

Abstract

The accumulation of many transformed versions of the same original videos on Web2.0 sites has a negative impact on the quality of the results presented to the users and on the management of content by the provider. An automatic identification of such content links between video sequences can address these difficulties. We put forward a fast solution to this video mining problem, relying on a compact keyframe descriptor and an adapted indexing solution. Two versions are developed, an off-line one for mining large databases and an online one to quickly post-process the results of keyword-based interactive queries. After demonstrating the reliability of the method on a ground truth, the scalability on a database of 10,000 hours of video and the speed on 3 interactive queries, some results obtained on Web2.0 content are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: Proc. 32nd intl. conf. on Very Large Data Bases, VLDB Endowment, pp. 918–929 (2006)

    Google Scholar 

  2. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Proc. 16th intl. conf. on World Wide Web, pp. 131–140. ACM, New York (2007)

    Chapter  Google Scholar 

  3. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proc. ACM SIGMOD intl. conf. on Management of Data, pp. 301–312. ACM, New York (2003)

    Google Scholar 

  4. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proc. 25th intl. conf. on Very Large Data Bases, pp. 518–529. Morgan Kaufmann Inc., San Francisco (1999)

    Google Scholar 

  5. Lejsek, H., Ásmundsson, F.H., Jónsson, B.T., Amsaleg, L.: Scalability of local image descriptors: a comparative study. In: Proc. 14th ACM intl. conf. on Multimedia, pp. 589–598. ACM, New York (2006)

    Chapter  Google Scholar 

  6. Law-To, J., Chen, L., Joly, A., Laptev, I., Buisson, O., Gouet-Brunet, V., Boujemaa, N., Stentiford, F.: Video copy detection: a comparative study. In: Proc. 6th ACM intl. Conf. on Image and Video Retrieval, pp. 371–378. ACM, New York (2007)

    Chapter  Google Scholar 

  7. Oostveen, J., Kalker, T., Haitsma, J.: Feature extraction and a database strategy for video fingerprinting. In: Chang, S.-K., Chen, Z., Lee, S.-Y. (eds.) VISUAL 2002. LNCS, vol. 2314, pp. 117–128. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Poullot, S., Buisson, O., Crucianu, M.: Z-grid-based probabilistic retrieval for scaling up content-based copy detection. In: Proc. ACM intl. Conf. on Image and Video Retrieval, Amsterdam, The Netherlands, pp. 348–355 (July 2007)

    Google Scholar 

  9. Satoh, S.: News video analysis based on identical shot detection. In: Proc. IEEE Intl. Conf. on Multimedia and Expo., pp. 69–72 (2002)

    Google Scholar 

  10. Satoh, S., Takimoto, M., Adachi, J.: Scene duplicate detection from videos based on trajectories of feature points. In: Proc. intl. workshop on Multimedia Information Retrieval, pp. 237–244. ACM, New York (2007)

    Chapter  Google Scholar 

  11. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proc. 9th IEEE Intl. Conf. on Computer Vision, pp. 1470–1477. IEEE Computer Society, Washington (2003)

    Chapter  Google Scholar 

  12. Takimoto, M., Satoh, S., Sakauchi, M.: Identification and detection of the same scene based on flash light patterns. In: Proc. IEEE Intl. Conf. on Multimedia and Expo., pp. 9–12. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  13. Wu, X., Hauptmann, A.G., Ngo, C.-W.: Novelty detection for cross-lingual news stories with visual duplicates and speech transcripts. In: Proc. 15th intl. conf. on Multimedia, pp. 168–177. ACM, New York (2007)

    Chapter  Google Scholar 

  14. Wu, X., Hauptmann, A.G., Ngo, C.-W.: Practical elimination of near-duplicates from web video search. In: Proc. 15th intl. conf. on Multimedia, pp. 218–227. ACM, New York (2007)

    Chapter  Google Scholar 

  15. Wu, X., Zhao, W.-L., Ngo, C.-W.: Near-duplicate keyframe retrieval with visual keywords and semantic context. In: Proc. 6th ACM intl. Conf. on Image and Video Retrieval, pp. 162–169. ACM, New York (2007)

    Chapter  Google Scholar 

  16. Yamagishi, F., Satoh, S., Sakauchi, M.: A news video browser using identical video segment detection. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3332, pp. 205–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Zhai, Y., Shah, M.: Tracking news stories across different sources. In: Proc. 13th ACM intl. conf. on Multimedia, pp. 2–10. ACM, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poullot, S., Crucianu, M., Buisson, O. (2008). Fast Content-Based Mining of Web2.0 Videos. In: Huang, YM.R., et al. Advances in Multimedia Information Processing - PCM 2008. PCM 2008. Lecture Notes in Computer Science, vol 5353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89796-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89796-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89795-8

  • Online ISBN: 978-3-540-89796-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics