Skip to main content

Document Forgery Detection with SVM Classifier and Image Quality Measures

  • Conference paper
Advances in Multimedia Information Processing - PCM 2008 (PCM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5353))

Included in the following conference series:

  • 1649 Accesses

Abstract

This paper presents a detection scheme for a fraudulent document made by printers. The fraud document is indistinguishable by the naked eye from a genuine document because of the technological advances in printing methods. Even though we cannot find any visual evidence of forgery, the fraud document includes inherent device features. We propose a method to uncover these features. 17 image quality measures are applied to discriminate between genuine and fake documents. The results of each measure are used as training and testing parameters of SVM classifier to determine fake documents. Preliminary experimental results are presented based on the fraud gift voucher made by several color printers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Printer steganography, http://en.wikipedia.org/wiki/Printer_steganography

  2. Ng, T.T., Chang, S.F., Lin, C.Y., Sun, Q.: Passive-blind Image Forensics, Multimedia Security Technologies for Digital Rights Management. Elsevier, Amsterdam (2006)

    Google Scholar 

  3. Sencar, H.T., Memon, N.: Overview of State-of-the-Art in Digital Image Forensics, Statistical Science and Interdisciplinary Research. World Scientific Press, Singapore (2008)

    Google Scholar 

  4. Khanna, N., Mikkilineni, A.K., Martone, A.F., Ali, G.N., Chiu, G.T.-C., Allebach, J.P., Delp, E.J.: A survey of forensic characterization methods for physical devies. Digital Investigation 3, 17–28 (2006)

    Article  Google Scholar 

  5. Gupta, G., Mazumdar, C., Rao, M.S., Bhosale, R.B.: Paradigm shift in document related frauds: Characteristics identification for development of a non-destructive automated system for printed documents. Digital Investigation 3, 43–55 (2006)

    Article  Google Scholar 

  6. Gupta, G., Saha, S.K., Chakraborty, S., Mazumdar, C.: Document Frauds: Identification and Linking Fake Document to Scanners and Printers. In: Proc. ICCTA 2007 (2007)

    Google Scholar 

  7. Avcibas, I., Sankur, B., Sayood, K.: Statistical evaluation of image quality measures. J. Electron. Imag. 11, 206–223 (2002)

    Article  Google Scholar 

  8. Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. IEEE Trans. Image Processing 12(2), 221–229 (2003)

    Article  MathSciNet  Google Scholar 

  9. Support vector machine, http://en.wikipedia.org/wiki/Support_vector_machine

  10. Alpaydin, E.: Introduction to machine learning. MIT press, Cambridge (2004)

    MATH  Google Scholar 

  11. SVMlight - Support Vector Machine, http://www.cs.cornell.edu/people/tj/svm_light

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryu, SJ., Lee, HY., Cho, IW., Lee, HK. (2008). Document Forgery Detection with SVM Classifier and Image Quality Measures. In: Huang, YM.R., et al. Advances in Multimedia Information Processing - PCM 2008. PCM 2008. Lecture Notes in Computer Science, vol 5353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89796-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89796-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89795-8

  • Online ISBN: 978-3-540-89796-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics