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Abstract. Combinatorial problems such as scheduling, resource alloca-
tion, and configuration have many attributes that can be subject of user
preferences. Traditional optimization approaches compile those prefer-
ences into a single utility function and use it as the optimization objective
when solving the problem, but neither explain why the resulting solution
satisfies the original preferences, nor indicate the trade-offs made dur-
ing problem solving. We argue that the whole problem solving process
becomes more transparent and controllable for the user if it is based on
the original preferences. We show how the original preferences can be
used to control the problem solving process and how they can be used to
explain the choice and the optimality of the detected solution. Based on
this explanation, the user can refine the preference model, thus gaining
full control over the problem solver.

1 Introduction

Although an impressive progress has been made in solving combinatorial op-
timization problems such as scheduling, resource allocation, and configuration,
optimization methods lack easy acceptance in industry. Expert users often want
a detailled control over the choice of a solution and are reluctant to sacrifice
existing practices for gaining small improvements in optimality. The existing
practices may govern the whole decision making process, in particular if it is
done manually. As an example, we consider the problem where multiple cus-
tomer orders are given and each order specifies a product that needs to be
produced. We further suppose that these products can be produced in different
ways, on different machines, and at different times. A schedule chooses a job
(i.e. an alternative in a production plan) for each customer order and allocates
a machine and a time to each activity in this job while respecting temporal
constraints and resource constraints. Usually, the experts will not determine an
arbitrary schedule, but may apply standard choices, for example when choosing
the job or the machines. Nevertheless, the standard choices may be abandoned if
they are not feasible or if they are in conflict with more important choices. If an
automatized scheduling system ignores these standard choices and the existing
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practices, then experts may be reluctant to accept it even if the system produces
a schedule that optimizes global objectives such as tardiness minimization.

As standard choices can be abandoned if there is a clear reason for this, they
do not have the character of constraints, but represent preferences. These pref-
erences are not formulated on global properties of the resulting schedule, but on
individual choices. There may be preferences for choosing a production plan for
a given product, preferences for choosing a resource, and so on. These individual
preferences easily appear if the possible options for a choice are individuals with
specific characteristics. Resource allocation problems may have many attributes
of this kind. The situation is similar for configuration problems, which can have
user preferences on all attributes that are exposed to the user. Those individual
preferences are typically treated by a MAUT (Multiple attribute utility the-
ory) approach and are aggregated into a single numerical utility function, which
complements other optimization objectives such as cost minimization. The util-
ity function usually has an additive form, namely that of a weighted sum of
subutility functions, which well fits into a mixed integer programming (MIP)
approach.

The quality of a MIP solution is then measured with respect to the utility
function, but not with respect to the original preferences. For example, a degree
of optimality of 99.8% means that as many preferences as possible have been
satisfied except for 2%. Unfortunately, this explanation does not make sense to
the end users who specified the original preferences. If the solution does not give
the most preferred choices to the end users, they would like to know whether
these most preferred choices are infeasible or whether they are in conflict with
other choices that have been made. Explanations of the trade-offs may help users
to accept the solution or to revise the preferences.

We therefore argue that solutions of optimization methods need to be en-
hanced by explanations of optimality in order to become acceptable for the
users. Moreover, these explanations should be given in terms of the original
preferences and in a form that is comprehensible for non-optimization special-
ists. Let us consider a simple configuration problem, namely that of choosing a
vacation destination. Suppose that Hawaii is preferred to Florida for doing wind-
surfing, but that Florida has been selected in the solution. The explanation may
be that the option Hawaii is infeasible since it is too far away. Or it may be
that Hawaii leads to high hotel costs and thus penalizes subsequent choices. Or
still another reason may be that a more important choice was that of including
visits to attraction parks among the vacation activities, which is not possible in
Hawaii. These explanations exhibit the trade-offs and the importance orderings
that generated the solution and that justify it.

The explanations of optimality unveil other problems of the MAUT approach.
Firstly, the MAUT approach assumes completeness of the preferences on the
individual attributes. If the user has only specified a partial ordering, it will
implicitly be completed when compiling the preferences into a utility function.
For example, the user may prefer Hawaii to Florida, Hawaii to the Cote d’Azur,
and the Cote d’Azur to the Mexico. We may compile this into a utility of 3 for
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Fig. 1. An interactive optimization process driven by explanations and preferences.

Hawaii, 2 for the Cote d’Azur and for Florida and 1 for the Mexico. This implies
that Florida is preferred to the Mexico, although the user has not stated this.
If the options Hawaii and Cote d’Azur are not possible, then only the option
Florida may be considered and this even if it may defeat the best choices for
other attributes. Hence, implicitly chosen preferences are a problem if they are
in conflict with true user preferences. It is therefore very important to expose
these conflicts to the user.

Secondly, the MAUT approach will rank multiple solutions in the same way,
although the end users may not consider all solutions as indifferent. Weight
adjustments are then necessary to differentiate the solutions and to achieve that
trade-offs are made in a way as expected by the users. As small changes in weights
can have a tremendous impact on the result, this process is difficult to achieve
manually. Furthermore, there are trade-offs that cannot be reached by weight
adjustments. An additive utility function can only characterize those solution as
optimal that are on the convex hull of the solution space. However, there are
Pareto-optimal solutions that represent valid trade-offs, although they do not
belong to the convex hull. Often they may even represent better compromises
than the MAUT-solutions (such as the leximin-optimal solutions in [4]). Finally,
additive utility functions suppose complete preferential independence and are
not able to deal with context-dependent preferences.

Although the completeness and independence assumptions of the MAUT
model are of great benefit for the optimizer, they may hinder fruitful interactions
between the users and the optimizers. The users may start with rather incomplete
preferences and may want to refine them dependent on the solutions they get.
The preference model should be sufficiently expressive and flexible to allow users
to control the problem solving behaviour and its outcome.

In this paper, we follow the vision in [2] and argue that preferences can di-
rectly be used to control the problem solving process. Hence, we don’t compile
the preferences into a utility function, but design problem solving methods that
directly use the original preferences. Concretely, we pursue a multi-objective
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optimization approach to achieve these capabilities. The approach consists in
decomposing the whole problem into alternative sequences of single-criterion
optimization problems which can be solved by standard optimizers. The chosen
sequence gives information that explains the optimality of the solution. Based
on the explanation, the user can either accept the solution or modify the pref-
erences. The problem solver in turn modifies the solution correspondingly. Pref-
erences thus allow the user to interact with the problem solver and to control
its behaviour, while avoiding overconstrained situations. The whole approach
has successfully been applied to configuration problems [8], but is of interest for
constraint programming in general.

The paper is organized as follows. We first introduce constraint satisfaction
problems with preferences. We then step by step introduce our optimization
approach. We start with atomic optimization steps, which optimize the prefer-
ences of a single criterion. We then show how the atomic optimization steps for
multiple criteria can be sequenced, which leads us to lexicographic optimization.
Different sequences of the criteria lead to different extreme solutions, which we
characterize in terms of a Permute-operator. The user can choose among the
sequences by imposing a partial importance ordering between criteria. As this
lexicographic approach does not characterize compromises between conflicting
criteria, we finally turn our attention to Pareto-optimal solutions. We can char-
acterize them by alternative sequences of atomic optimization steps as well if
we introduce auxiliary (binary) criteria that limit the penalization of the less
important criteria. For each of these optimization problems, we give a solved
form and discuss how partial preferences are completed to obtain this solved
form. In this paper, we do not discuss the algorithms for effectively computing
solutions, but focus on the information that justifies a solution. For each opti-
mization problem, we define an explanation of optimality that helps the user to
modify the preference model and the problem solver outcome.

2 Combinatorial Problems with Preferences

2.1 Variables and Domains

Throughout this papers, we consider a finite set of variables X where each vari-
able x ∈ X has a domain D(x). For example, consider three variables x1, x2, x3 of
a vacation configuration example. The domain of x1 contains the possible activi-
ties of the vacation, the domain of x2 contains the possible vacation destinations,
and the domain of x3 contains the possible hotel chains:

D(x1) := {Casino,Cliff-Diving,Film-studios,Sea-parc,Wind-surfing}
D(x2) := {Acapulco,Antibes,Honolulu,Los Angeles,Miami}
D(x3) := {H1,H2,H3,H4,H5,H6}

Each value v ∈ D(x) defines a possible value assignment x = v to x. A set
that contains exactly one of those value assignments for each variable in X and
that contains no other elements is called an assignment to X . For example, a
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Activity x1 City x2

Casino Antibes
Cliff-diving Acapulco

Film Studios Los Angeles
Sea-Parc Antibes
Sea-Parc Los Angeles

Wind-Surfing Antibes
Wind-Surfing Honolulu
Wind-Surfing Miami

Table 1. Constraint c1.

City x2 Hotel chain x3

Acapulco H2
Acapulco H6
Antibes H3
Antibes H5
Honolulu H3
Honolulu H5

Los Angeles H2
Los Angeles H4
Los Angeles H6

Miami H1
Miami H4

Table 2. Constraint c2.

wind-surfing vacation in Honolulu’s H3 chain is represented by the following
assignment:

σ1 := {x1 = Wind-surfing, x2 = Honolulu, x3 = H3}

The set of all assignments to X is called the problem space of X and we denote
it by S(X ). Given an assignment S to X we can project it to a subset Y of the
variables by choosing the value assignments to elements of Y :

S | Y := {(x = v) ∈ S | x ∈ Y } (1)

For example, projecting the assignment σ1 to the vacation activity and the va-
cation destination results into the following subset:

σ1 | {x1, x2} := {x1 = Wind-surfing, x2 = Honolulu}

2.2 Constraints

We can restrict the problem space of X by defining constraints on variables in
X . A constraint c has a scope Xc ⊆ X and a ‘relation’ which we express by a
set Rc of assignments to the scope Xc. This set can be specified explicitly in
form of a table where each column corresponds to a variable in Xc, each row
corresponds to an assignment in Rc, and the value v from a value assignment
(x = v) ∈ S is put in the cell for column x and row S. Tables 1 and 2 show two
compatibility constraints of the vacation example. The first constraint describes
the activities that are possible in a city and has the scope {x1, x2}. The second
constraint shows which hotel chain is available in which city and has the scope
{x2, x3}.

The relation Rc can also be specified by a logical formula that involves the
variables from Xc and the operations from a given mathematical structure over
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City x2 Region z2

Acapulco Mexico
Antibes Cote d’Azur
Honolulu Hawaii

Los Angeles California
Miami Florida

Table 3. Criterion for city.

Hotel x3 Price z3 Quality z4

H1 40 Economic
H2 60 Basic
H3 100 Basic
H4 100 Standard
H5 150 Standard
H6 200 Luxury

Table 4. Criteria for hotels.

the variable domains (such as arithmetic operations, boolean comparisons, and
boolean operations). In this case, the relation Rc contains all assignments S that
imply the formula. An example is the following constraint on the variables x, y, z:

if x >= 10 then z = x*y;

A constraint satisfaction problem CSP for X is given by a finite set of constraints
C the scopes of which are all subsets of X . A CSP is finite if all its domains and
relations are finite. A constraint c is satisfied by an assignment S to X iff S | Xc is
an element of Rc. An assignment S is a solution of C iff it satisfies all constraints
of C. If a CSP has no solution then it is called inconsistent. It is often convenient
to replace a CSP C by the conjunction

∧

c∈C c of its constraints. Similarly, we can

replace a conjunction
∧k

i=1 ci be the set of its conjuncts {c1, . . . , ck}. Hence all
definitions and propositions referring to constraints C1, C2 can also be applied
to CSPs and vice versa.

2.3 Criteria and Preferences

A CSP can have multiple solutions. In general, the user of a CSP application will
not be satisfied with a randomly chosen solution, but prefers certain solutions
to others. Since there may be an exponential number of solutions, we cannot
expect that a system first generates all of them and then asks the user to express
her preferences directly on the solution space. However, it is not necessary to
express the preferences directly between the alternatives such as the solutions.
In decision theory, preferences are formulated on criteria. A criterion is simply
a mathematical function that maps an alternative to some value.

We directly encode those functions in our constraint language. Let Ω be
a domain. A criterion z with domain Ω is an expression f(x1, . . . , xn) where
x1, . . . , xn are variables from X and f is a function of signature D(x1) × . . . ×
D(xn) → Ω. The function f is formulated with the operators of the constraint
language (e.g. sum, min, max, conditional expression) or by a table. A criterion
can also be equal to a variable xi, namely if is formulated with the help of the
identity function.

In the vacation example, we want to express preferences on the activity, the
vacation region, and the price and the quality of the hotel chain. We therefore
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introduce four criteria z1, z2, z3, z4 and their respective domains Ω1, Ω2, Ω3, Ω4.
The criterion z1 is equal to the vacation activity x1 and has the domain Ω1 :=
D(x1). The other criteria are defined via a table (see Tables 3 and 4) and have
the following domains:

Ω2 := {California,Cote d’Azur,Florida,Hawaii,Mexico}
Ω3 := [0, 1000]
Ω4 := {Economic,Basic,Standard,Luxury}

We can evaluate the expression f(x1, . . . , xn) if an assignment σ for the
variables in X is given. We denote the resulting value by z(σ).

The domain Ω of a criterion z describes the possible outcomes in which
the user is interested in. The user can compare these outcomes and formulate
preferences on them. Preferences are modelled in form of a preorder % that can
be decomposed into a strict part Â and indifference ∼. If ω1 % ω2 holds for
two outcomes ω1, ω2 ∈ Ω, then this means that the outcome ω1 is at least as
preferred as ω2. Please note that we do not require that the preference order %

is complete. Hence, if may be the case that neither ω1 % ω2, nor ω2 % ω1 hold.
In this case, the preference between ω1 and ω2 is not specified, meaning that the
user can refine the preference order later on.

A preorder is a transitive and reflexive relation. It is not necessary that
the user specifies this order exhaustively. Given a relation R ⊆ Ω × Ω of user
preferences, we obtain a preorder % by determining the reflexive and transitive
closure of R. The result is the smallest preorder that contains the specified
user preferences. For example, suppose that the user prefers Hawaii at least as
California, California at least as the Cote d’Azur and as Florida, and the Cote
d’Azur at least as Mexico. Similarly, the user prefers cliff diving at least as sea
parc visits, sea parc visits at least as casino visits and at least as wind-surfing,
and casino visits and wind-surfing at least as visits of film studios. Furthermore,
the user prefers casino visits at least as wind-surfing and vice versa. Figures
2 and 3 show these preferences (straight arcs and dotted-dashed arcs) and the
corresponding preorders (any arc) in a graphical form.

We are mainly interest in the strict part Â of this preorder, namely the set of
all pairs (ω1, ω2) in Ω×Ω such that ω1 % ω2 holds, but not ω2 % ω1. The absence
of a strict preference between two outcomes can either signify indifference or
incompleteness. The strict part of a preorder is a strict partial order, i.e. an
irreflexive and transitive relation. We write ω1 º ω2 as a short-hand for ω1 Â ω2

or ω1 = ω2. The relation º is a subset of the preorder %, but the inverse does
not hold in general. In the example, the strict parts are obtained by suppressing
the dotted-dashed arcs and the reflexive arcs of the form (ω, ω).

We also consider the case where the preorder % is complete. The strict part
of a complete preorder is a ranked order, i.e. a strict partial order satisfying
the following property for all outcomes ω1, ω2, ω3: if ω1 Â ω2 then either ω3 Â
ω2 or ω1 Â ω3. Ranked orders can be represented by utility functions u that
map assignments to a numerical value such that u(ω1) > u(ω2) iff ω1 Â ω2.
A complete preorder that is additionally anti-symmetric is a total order. The
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strict part of a total order is a strict total order, i.e. a strict partial order that
is complete on all outcomes that are different.

The user can formulate preferences on multiple criteria. Consider m crite-
ria z1, . . . , zm with domains Ω1, . . . , Ωm. Furthermore, consider a strict partial
order Âi for each domain Ωi. We say that the pair pi := 〈zi,Âi〉 of the i-th cri-
terion and the i-th order is a preference. This terminology is, for example, used
in [9]. If a preference 〈zi, >〉 uses the increasing order >, then we abbreviate it
by maximize(zi). Similarly, we abbreviate a preference 〈zi, <〉 based on the de-
creasing order by minimize(zi). For example, price minimization is expressed as
minimize(z3) in the vacation example. Preferences thus generalize optimization
objectives as used in CP or MIP.

2.4 Wishes

Wishes are constraints that should be satisfied if possible. A wish can be mod-
elled by a binary criterion, namely the truth value of the constraint, and an
implicit preference ordering that prefers true to false. Given a constraint c, we
define its truth value zc for an assignment σ as follows:

zc(σ) :=

{

1 if σ satisfies c

0 otherwise.
(2)

A wish for c is a preference 〈zc, >〉. We abbreviate it by wish(c).

3 Preference-based Problem Solving

Combinatorial problems with preferences are classically solved by compiling all
preferences in to a single utility function and by determining a solution of the
constraints that has maximal utility. The utility function is also used to measure
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the quality of the solution that is returned by the optimizer. A 100% optimality
means that as many preferences as possible have been satisfied. However, the
optimizer does not give an explanation of optimality in terms of the original
preferences. If the user specified a preference 〈z,Â〉, she wants to know whether
the criterion z has its best value in the solution. If not, the user wants to get an
explanation why no better outcome has been obtained for the criterion. If the
criterion z is in conflict with other criteria then the explanation should indicate
this conflict and the trade-off that has been made.

We show that explanations of this kind can be produced if the problem solv-
ing process is based on the original preferences. If there is only a single preference,
then we can set up an optimization problem that directly optimizes this prefer-
ence. In this case, we don’t obtain any mismatch between the preferences and
the optimization objectives. If multiple preferences are given, we therefore treat
them step by step in a given sequence. In each step, we solve a classical opti-
mization problem that optimizes one of the original preferences. The sequential
approach imposes that some criteria get priority over the others. We therefore
treat alternative sequences and are thus able to determine the extreme solutions
where trade-offs are always decided in favour of more important criteria. In order
to produce other trade-offfs, we introduce auxiliary criteria and wishes.

3.1 Atomic Optimization Step

Consider a single preference 〈z,Â〉. We are interest in those solutions of the
constraints C that assign a Â-maximal value to the criterion z. A solution σ

assigns a Â-maximal value v to the criterion z iff there is no other solution
σ∗ that assigns a better value v∗ to z, i.e. a value that satisfies v∗ Â v. To
characterize those solutions, we introduce an operator, denoted by Max(〈z,Â〉),
that maps a constraint C to a new constraint that is satisfied by exactly the
solutions that assign Â-maximal values to z. Hence, Max(〈z,Â〉)(C) denotes the
optimization problem that need to be solved. As it concerns a single criterion,
it need not be decomposed further and thus represents an atomic optimization
step.

If > is a total order, then the preference 〈z,>〉 can be modelled by an ordinal
utility function u that maps each possible outcome ω in the domain of z to a
unique numeric utility value u(ω). We then obtain a classical optimization prob-
lem, namely that of maximizing u(z). This problem can be solved by standard
optimizers (such as constraint-based Branch-and-Bound), which find a solution
of maximum value u∗ for u(z). Since we supposed that > is a total order, there
is a unique outcome ω∗ in the domain of z that has the utility u∗, Hence, each
solution of C that is optimal w.r.t. the preference 〈z,>〉 satisfies the constraint
C∧z = ω∗ and the inverse is true as well. Hence, the following equivalence holds
for preferences with total orders:

Max(〈z,>〉)(C) ≡ C ∧ z = ω∗ (3)

We can thus characterize the entire set of optimal solutions by the constraint
C ∧ z = ω∗ and replace the original problem Max(〈z,>〉)(C) by this constraint
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without loosing any optimal solution. Subsequent optimization steps can then
further reduce the set of optimal solutions of Max(〈z,>〉)(C). We also say that
C ∧ z = ω∗ is the solved form of the optimization problem Max(〈z,>〉)(C).

Once the optimization problem has been solved, the user may ask for expla-
nations of optimality such as

1. Is ω∗ a best value in Ω?
2. Why can’t z have a value better than ω∗?
3. Why hasn’t the value ω been chosen for z?

The answer to the first question is yes iff Ω does not contain another value ω∗∗

such that ω∗∗ > ω∗. If ω∗ is a best value, then the criterion has obtained its
overall optimal value meaning that the preferences of the user has been addressed
to complete satisfaction. Otherwise, there are better values ω∗∗ in Ω and the
user might ask why none of those values have been assigned to z. The set of
those values is characterized by the unary constraint z > ω∗, which can easily
be encoded in a constraint solver (e.g. by removing all values smaller than or
equal to ω∗ from the domain of z). Since ω∗ is the optimal value, the constraint
C ′ := C ∧ z > ω∗ is inconsistent. For the purpose of explanation, we represent
the conjunctive constraint C ′ by the set of all its conjuncts and determine a
conflict for C ′, i.e. a minimal subset X ′ of C ′ that is inconsistent. The conflict
can, for example, be computed by the QuickXplain-algorithm [7]. Since C is
assumed to be consistent, the conflict X ′ needs to contain the constraint z > ω∗.
The other elements X := X ′ ∩ C of the conflict then explain why z can’t have
a value better than ω∗ w.r.t. the order >. These constraints X defeat any value
for z that is better than the optimum ω∗. The user might also ask why z has not
obtained a specific value ω. If ω is greater than the optimum ω∗, then the choice
z = ω is defeated by X. Otherwise, ω is smaller than the optimum ω∗ and has not
been chosen for that reason. In order to give the right answer, the explanation
of optimality needs both include the defeaters X as well as the ordering >.

Let σ be a solution of the problem Max(q)(C) with total preferences q :=
〈z,>〉. An explanation of the Max(q)-optimality of σ is a triple (q, ω∗, X) such
that ω∗ is equal to the optimum z(σ) and X is a minimal subset of the set of
conjuncts of C for which X ∪ {z > ω∗} is inconsistent.

The atomic optimization problems of our vacation examples all allow the
best value for all the preferences except for price minimization. The optimum of
the problem Max(minimize(price))(C) is 40 and an explanation of optimality is
(minimize(price), 40, {c2}).

For total orders, we are now able to transform the optimization problem into
a solved form and to explain the optimality.

3.2 Alternative Optimizations

User preferences will usually be partial orders, in particular at the beginning of
the interactive problem solving process. Hence, there may be two solutions σ1

and σ2 of Max(〈z,Â〉) that assign incomparable values ω1 and ω2 to the criterion
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Fig. 4. The three linearizations >2,1, >2,2, >2,3 of the region preferences.

z. These values are neither equal, nor one is preferred to the other, meaning that
ω1 6= ω2, ω1 6Â ω2, and ω2 6Â ω1 all hold. As a consequence, the solved form of
Max(〈z,Â〉)(C) will be a disjunction of assignments of the form z = ωi. If Ω∗ is
the set of all values that are assigned to the criterion z in the different solutions
of the optimization problem, then the solved form of the problem is as follows:

Max(〈z,Â〉)(C) ≡
∨

ω∗∈Ω∗

C ∧ z = ω∗ (4)

We use the partial preferences order Â2 on the vacation regions to give an
example. Suppose that the cities Honolulu and Los Angeles are not possible
due to booking problems. We thus obtain the problem Max(〈z2,Â2〉)(C

′) where
C ′ := C ∧ x2 6= Honolulu ∧ x2 6= Los Angeles. In this case, Ω∗ contains the
regions Florida and Cote d’Azur and the solved form is C ′∧ (z2 = Florida∨z2 =
Cote d’Azur).

This characterization does not yet give us a way to compute the solved form
as a standard optimizer needs a total order (or a corresponding utility function
as discussed in the previous sub-section). However, we can reduce the original
optimization problem for partial orders to optimization problems for total orders.
We just choose a total order > on Ω that is a superset of Â. We call this a
linearization of Â and we denote the set of all linearizations of Â by τ(Â).
For example, we obtain three linearizations >2,1, >2,2, >2,3 for the preferences
Â2 on the vacation region (cf. Figure 4). Thanks to the linearizations, we are
able to transform the optimization problem for partial orders into alternative
optimization problems on total orders since the following property holds:

Max(〈z,Â〉)(C) ≡
∨

>∈τ(Â)

Max(〈z,>〉)(C) (5)

As a consequence, we can use the solved forms of the alternative optimization
problems in order to obtain the solved form for the optimization problem of
the partial orders. Furthermore, the explanations of optimality of the different
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alternatives allow us to define an explanation of optimality for the original prob-
lem. Consider of a solution σ of the problem Max(p)(C) with partially ordered
preferences p := 〈z,Â〉. An explanation of the Max(q)-optimality of σ is also an
explanation of the Max(p)-optimality of σ iff q = 〈z,>〉 and > is a linearization
of Â. As such a linearization > of Â exists, the explanation of Max(p)-optimality
also exists.

In our example, we consider a solution σ1 that chooses Florida (i.e. z(σ1) =
Florida) and a solution σ2 that chooses the Cote d’Azur (i.e. z(σ2) = Cote d’Azur).
There are three linearizations of the partial preferences. The first one, namely
>2,1 prefers Florida to the Cote d’Azur and thus helps to explain the optimality
of σ1. The other two, namely >2,2, >2,3 prefer Cote d’Azur to Florida. Any of
them can be used in an explanation of the optimality of σ2 such as the following
one:

ξ := (〈z2, >2,2〉,Cote d’Azur, {x2 6= Honolulu, x2 6= Los Angeles})

If this explanation is submitted to the user, she can ask why the other regions
have not been selected. The options Hawaii and California are defeated by the
conflict that is reported by the explanation. The option Mexico has been dis-
carded since the proposed option Cote d’Azur has been preferred by the user.
And the option Florida has been discarded since the linearization >2,2 prefers
the Cote d’Azur. If the user is not satisfied with the last response, she can refine
the preference model and add a preference Florida Â′

2 Cote d’Azur. This will
eliminate the current solution. Hence, the linearizations of the user preferences
are an important part of the explanation as they give hints to the user how to
modify undesired solutions.

According to formula 5, it is necessary to consider all linearizations of the
strict partial order Â in order to compute the solved form of the optimization
problem with partial preferences. However, we have seen that some of those lin-
earizations lead to the same solution and the preference-based search method [6]
exploits this fact and explores only a subset of the linearization when computing
the preferred solutions.

3.3 Lexicographical Approach

User preferences do not concern a single criterion, but multiple criteria. We
therefore consider the preferences p1, . . . , pn on n criteria. We suppose that pi

has the form 〈zi,Âi〉. Each preference gives rise to an optimization operator
Max(pi). The question is how these optimization operators should be composed,
in particular since the preferences may be in conflict. The preferences are in
conflict on the constraints C iff the conjunction

∧

i Max(pi)(C) has no solution.
In this case, we need to find a trade-off between the preferences. The easiest
way to start with is to treat the preferences in a given order and to decide
trade-offs in favour of the preferences that are considered first. Lexicographic
optimization defines an ordering on the solution space based on this importance
principle. Consider two assignments σ1 and σ2. We consider the tuples of values
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that both assignments assign to the criteria and define a lexicographical order
Âlex between them. The relation

(z1(σ1), . . . , zn(σ1)) Âlex (z1(σ2), . . . , zn(σ2)) (6)

holds iff there exists a k such that zk(σ1) Âk zk(σ2) and zi(σ1) = zi(σ2) for
i = 1, . . . , k − 1. A solution σ of C is a lexicographically optimal solution of C iff
there is no other solution σ∗ of C such that (z1(σ

∗), . . . , zn(σ∗)) is lexicographi-
cally better than (z1(σ), . . . , zn(σ)). We introduce the lexicographic optimization
operator Lex(p1, . . . , pn) that maps a constraint C to a new constraint C ′ that
is satisfied by the lexicographically optimal solutions of C.

Similar to equation 5, we can transform the problem Lex(p1, . . . , pn)(C) into
a solved form by considering a linearization for each strict partial order ≺i.
We define τ(〈zi,Âi〉) as the set of all preferences 〈zi, >i〉 for which >i is a
linearization of Âi. Furthermore, we define τ(p1, . . . , pn) as the Cartesian prod-
uct τ(p1) × . . . × τ(pn). The following equivalence holds between lexicographic
optimization problems with partial preferences and the problems obtained by
linearizing these preferences:

Lex(p1, . . . , pn)(C) ≡
∨

(q1,...,qn)∈τ(p1,...,pn)

Lex(q1, . . . , qn)(C) (7)

A lexicographic optimization problem Lex(q1, . . . , qn)(C) with total preferences
can then be transformed to a sequence of single-criterion optimization problems
which can be solved by a standard optimizer:

Lex(q1)(C) ≡ Max(q1)(C)
Lex(q1, . . . , qn)(C) ≡ Lex(q2, . . . , qn)(Max(q1)(C))

(8)

The solved form has the form C ∧ z = ω∗
1 ∧ . . . z = ω∗

n. In the vacation example,
the problem Lex(〈z1,Â1〉, 〈z2,Â2〉,minimize(z3))(C) has the solved form C∧z1 =
Cliff diving ∧ z2 = Mexico ∧ z3 = 60.

Explanations for lexicographical optimality are sequences of explanations
for single-criterion optimization problems. Consider a solution σ of the prob-
lem Lex(p1, . . . , pn)(C). A sequence (ξ1, . . . , ξn) is called an explanation of

the Lex(p1, . . . , pn)-optimality of σ iff there exists totally ordered preferences
(q1, . . . , qn) ∈ τ(p1, . . . , pn) such that ξi is an explanation of Max(qi)-optimality
of the i-th optimization problem Max(qi)(C ∧ z1 = z1(σ)∧ . . .∧ zi−1 = zi−1(σ)).
Explanations of Lex(p1, . . . , pn)-optimality always exist and can easily be pro-
duced when solving the problem.

Consider a solution σ1 of the vacation configuration problem Lex(〈z1,Â1

〉, 〈z2,Â2〉,minimize(z3))(C). An explanation of optimality is (ξ1, ξ2, ξ3) where

ξ1 := (〈z1, >1,1〉,Cliff diving, {})
ξ2 := (〈z2, >2,1〉,Mexico, {z1 = Cliff diving})
ξ3 := (〈z3, <〉, 60, {z2 = Mexico})

We can depict this explanation in a graphical form. Each triple ξi is represented
by a node. There is an edge from ξi to ξj if the defeaters of zj contain a constraint
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of the form zi = ωi meaning that the optimal value for zi helped to defeat
the better values for zj . Figure 7 shows the explanation of the lexicographical
optimality of σ1 in graphical form. This graphical form exhibits the conflicts
between the criteria. The edges go from more important criteria to less important
criteria and show that the conflicts have been resolved in favour of the more
important criteria.

3.4 Alternative Sequentializations

Whereas lexicographical optimization is one of the fundamental approaches of
multi-criteria optimization, few attention has been paid to the choice of the
importance ordering. Most approaches use a static importance ordering among
the criteria. However, it is often natural to try out different orderings of the
criteria. Thus, a user can get a clear idea of the extreme solutions before exploring
compromises.

We characterize each family of extreme solutions by a permutation π of the
n preferences (p1, . . . , pn). Given such a permutation, we optimize the criteria in
the ordering pπ1

, . . . , pπn
. Let Π be the set of all those permutations. We intro-

duce a new operator, called Permute(p1, . . . , pn)(C), that maps the constraint C

to a constraint C ′ that is satisfied by all extreme solutions of C. This constraint
is equivalent to a disjunction of lexicographic optimization problems:

Permute(p1, . . . , pn)(C) ≡
∨

π∈Π

Lex(pπ1
, . . . , pπn

)(C) (9)

As explanations of the different lexicographic optimization problems preserve
the ordering of the criteria, it is straightforward to combine the explanations of
those problems. Consider the solution σ of the problem Permute(p1, . . . , pn)(C),
An explanation (ξπ1

, . . . , ξπn
) of the Lex(pπ1

, . . . , pπn
)-optimality of σ is an ex-

planation of the Permute(p1, . . . , pn)-optimality of σ iff π is a permutation.
The vacation example Permute(〈z1,Â1〉, 〈z2,Â2〉,minimize(z3))(C) has three

extreme solutions that are justified by different importance orderings. Solution
σ1 chooses Cliff-Diving in Mexico with hotel costs of 60$ based on the order
z1, z2, z3. Solution σ2 proposes Wind-Surfing in Hawaii with hotel costs of 100$
by following the order z2, z1, z3. Solution σ3 offers Wind-Surfing in Florida with
hotel costs of 40$ based on the order z3, z2, z1. Figure 5 displays the possible
combinations of the criteria values (in a way that is similar to the micro-structure
of constraint networks). The three extreme solutions are represented by thick
lines. As an example of an explanation, we give one for the optimality of the last
solution:

((〈z3, <〉, 40, {}),
(〈z2, >2,1〉,Florida, {z3 = 40}),
(〈z1, >1,1〉,Wind surfing, {z2 = Florida}))

This explanation exhibits the importance ordering of the criteria and thus ex-
plains how conflicts between preferences are resolved.
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3.5 Importance Preferences

Thanks to the explanations, the user can inspect the conflicts between criteria
and the way they have been resolved. If the user is not satisfied with such
a conflict resolution, she can change it by reordering the criteria. For example,
suppose that the user is not satisfied with a vacation package of a high price. The
user now learns that this high price is caused by a very good quality rating, which
was chosen to be more important. The user wants to give price minimization a
higher importance than quality maximization and thus expresses an importance
ordering between the price criterion z3 and the quality criterion z4. We formalize
this importance ordering in terms of a strict partial order I ⊆ Z × Z on the
criteria set Z := {z1, . . . , zn}. In our example, we have

I := {(z3, z4)} (10)

We now use this importance ordering to restrict the set of extreme solutions.
We consider only those permutations π of the preferences p1, . . . , pn that respect
the importance ordering. More important criteria need to be ranked first. Hence,
the permutation π respects the importance ordering I iff the following property
holds for all i, j:

(zπi
, zπj

) ∈ I implies i < j (11)

Let Π(I) be the set of all permutations π that respect I. Furthermore, we in-
troduce a variant of the permute-operator Permute(p1, . . . , pn : I)(C) that is
restricted to those extreme solutions that are obtained by the permutations in
Π(I):

Permute(p1, . . . , pn : I)(C) ≡
∨

π∈Π(I)

Lex(pπ1
, . . . , pπn

)(C) (12)

Preferences between criteria may eliminate extreme solutions, but do not add
new ones:

I ⊆ I∗ implies Permute(p1, . . . , pn : I∗)(C) ⇒ Permute(p1, . . . , pn : I)(C) (13)
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The importance ordering I also impacts explanations. Consider the solution σ

of the problem Permute(p1, . . . , pn : I)(C), An explanation (ξπ1
, . . . , ξπn

) of the
Lex(pπ1

, . . . , pπn
)-optimality of σ is an explanation of the Permute(p1, . . . , pn :

I)-optimality of σ iff π is a permutation in Π(I).
We now discuss the effect of importance preferences on the vacation example.

Suppose that solution σ3 has been submitted to the user. This solution proposes
Wind-surfing in Florida with hotel costs of 40$ based on the ordering z3, z2, z1.
The user criticizes this explanation by stating that the choice of the vacation
activity and the vacation region is more important than the price. The impor-
tance preferences I1 := {(z1, z2), (z1, z3)} are added to the preference model. As
the order z3, z2, z1 does not respect these importance preferences, solution σ3 is
no longer proposed. Solutions σ1 and σ2 still have valid importance orderings.
Figures 7 and 8 give explanations of optimality of these solutions of the problem
Permute(〈z1,Â1〉, 〈z2,Â2〉,minimize(z3) : I1)(C).

3.6 Trade-offs and Preference Limits

Extreme solutions are resolving conflicts between preferences completely in
favour of the more important criteria. If two criteria z1 and z2 are in conflict,
then z1 gets its best value, while z2 is completely penalized. Changing the order
completely turns the balance around and the conflict is decided in favour of z2

while penalizing z1. However, it is also possible to use compromises and to trade
a small improvement for z2 against a small penalization of z1 without changing
the order of the criteria. Pareto-optimality captures all the possible trade-offs.

The notion of Pareto-optimality does not impose any importance ordering
on the criteria. It extends the partial ordering on the different criteria to a
partial ordering on the complete criteria space without making any particular
assumption. An assignment σ∗ Pareto-dominates another assignment σ iff 1.. σ∗

and σ differ on at least one criterion zk (i.e. zk(σ∗) 6= zk(σ)) and 2. σ∗ is strictly
better than σ on all criteria on which they differ (i.e. zi(σ

∗) 6= zi(σ) implies
zk(σ∗) Âk zk(σ)). An equivalence definition consists in saying that σ∗ dominates
σ iff σ∗ is at least as as good as σ on all criteria (i.e. zk(σ∗) ºk zk(σ)) and there
is at least one criterion where σ∗ is strictly better than σ (i.e. zk(σ∗) Âk zk(σ)).
Pareto-dominance defines a strict partial order on the criteria space.
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A solution σ of C is a Pareto-optimal solution of C iff there is no other solution
σ∗ that Pareto-dominates σ. We introduce an operator Pareto(p1, . . . , pn) that
maps a constraint C to a new constraint C ′ that is only satisfied by the Pareto-
optimal solutions of C. Non-Pareto-optimal solutions clearly are not desirable
since there are solutions that are better on one or more criteria while keeping
the other criteria unchanged.

Figure 5 shows a Pareto-optimal solution for the vacation example which is
not an extreme solution. This solution, which we name σ4, proposes Sea-parc
visits in California with Hotel costs of 60$. Hence, σ4 does not choose the best
value for any criteria, but it is Pareto-optimal since we cannot improve any
criterion without getting a worse value for another criterion. Figure 6 shows
the trade-off between the vacation activity z1 and the vacation region z2. The
solution σ4 is situated between the two extreme solutions σ1 and σ2.

As for lexicographical optimization, we can linearize the partially ordered
preferences and transform a Pareto-optimization problem into a disjunction of
Pareto-optimization problems with totally ordered preferences:

Pareto(p1, . . . , pn)(C) ≡
∨

(q1,...,qn)∈τ(p1,...,pn)

Pareto(q1, . . . , qn)(C) (14)

However, there is no direct way to transform a Pareto-optimization problem
into a solved form even if it is based on total orders. One approach to solve
those problems consist in generalizing optimization methods such as Branch-
and-Bound search to a partial order. The approach is pursued in [5]. Branch-
and-bound search for a partial order needs to maintain a whole Pareto-optimal
frontier which might become rather inefficient. More importantly, this method
does not produce explanations of optimality that exhibit the trade-offs between
criteria. For this reason, we do not follow this approach, but seek ways to solve
Pareto-optimization problems by alternative sequences of classical optimization
steps. We observe that all extreme solutions are Pareto-optimal (see [6]):

Permute(p1, . . . , pn)(C) ⇒ Pareto(p1, . . . , pn)(C) (15)

Hence, we can start with extreme solutions when determining Pareto-optimal
solutions. An extreme solution is entirely characterized by an ordering of the
criteria (and of the user preferences). However, these orderings do not charac-
terize those compromises between two conflicting criteria where none of the two
criteria gets its best value. We need to insert additional steps into the sequence
of optimization problems. An extreme solution is always in favour for the most
important criterion and completely penalizes the less important ones. For ex-
ample, consider two conflicting preferences 〈z1,Â1〉 and 〈z2,Â2〉. Let σ be the
extreme solution for the ordering z1, z2. The criterion z1 gets its best feasible
value, namely z1(σ), whereas z2 is penalized and gets the value z2(σ). If we want
to obtain a better value for the less important criterion z2, then we need to limit
its penalization before optimizing the more important criterion z1. For this pur-
pose, we add the constraint z2 Â z2(σ) before optimizing z1. If this constraint
is satisfiable, then the optimization of z1 will produce the best solution for z1

17



under the constraint z2 Â z2(σ). If such a penalization limit is infeasible, then
it should be retracted. To achieve this, we represent penalization limits of the
form z2 Â z2(σ) as wishes.

We introduce a wish for each criterion and for each possible value of this
criterion:

limits(〈zi,Âi〉) := 〈wish(zi ºi ω1), . . . ,wish(zi ºi ωn)〉 (16)

Furthermore, we consider the set I of importance preferences stating that wishes
for worse outcomes precede wishes for better outcomes:

I := {(wish(zi ºi ω),wish(zi ºi ω∗)) | ω∗ Â ω, i = 1, . . . , n} (17)

It is a common modelling technique in Operations Research to transform an
integer variable into a set of binary variables. Hence, our transformation has
nothing unusual except that it applies to the criteria and not to the decision
variables. The Pareto-optimal solutions of the original model then correspond
exactly to the extreme solutions of the binary model (cf. theorem 1 in [6]):

Pareto(p1, . . . , pn)(C) ≡ Permute(limits(p1), . . . , limits(pn) : I)(C) (18)

This correspondence allows us to transform Pareto-optimal solutions into a
solved form and to define explanations of optimality.

Interestingly, the original optimization steps of the form Max(〈zi Âi〉)(C
′)

have disappeared in this new characterization. If the result of this optimiza-
tion if ω′, then this step corresponds to the last successful wish on zi, namely
Max(wish(zi ºi ω′))(C ′). Each Pareto-optimal solution is thus characterized by
a sequence of wishes and there are multiple wishes for the same criterion zi.
There are logical dependencies between wishes that allow us to speed up the
solving process and to simplify the explanations. If wish(zi ºi ω) fails, then all
wishes wish(zi ºi ω′) for better outcomes ω′ Â ω will also fail. Furthermore, if
wish(zi ºi ω) succeeds and is directly preceded by a wish for the same criterion
then it subsumes this previous wish and the previous wish can be removed from
explanations of optimality.

Explanations of Pareto-optimality are thus obtained by determining subse-
quences of explanations for lexicographical optimality of the binary preference
model. Let σ be a Pareto-optimal solution of Pareto(p1, . . . , pn)(C). Then σ is
an extreme solution of Permute(limits(p1), . . . , limits(pn) : I)(C) and there ex-
ists an explanation (ξ1, . . . , ξm) of optimality of this extreme solution. Let ξj be
(〈wish(z′j º ω′

j), >〉, vj , Xj). We say that ξj is relevant iff the wish is successful
(i.e. vj = 1) and the next triple concerns a different criterion (i.e. z′

j+1 6= z′j).
An explanation of Pareto-optimality of σ is the sequence (ξj1 , . . . , ξjk

) of the
relevant triples from (ξ1, . . . , ξn) in the original order, i.e. j1 < j2 < . . . < jk.
These explanations can still contain multiple wishes for the same criterion. The
last wish for the criterion in an explanation determines the value of the criterion.
The other wishes limit the penalization of the criterion before optimizing other
criteria. Hence, the explanation highlights the critical choices that need to be
made in order to obtain the Pareto-optimal solution σ.
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The solving algorithms for Pareto-optimal solutions in [6] is based in wishes
and is easily able to provide these explanations of optimality. The explanations
can also be obtained for Wassenhove and Gelders’ algorithm for bicriterion op-
timization [10].

We give an explanation for the Pareto-optimal solutions σ1 and σ4 of the
vacation example. The explanation for σ1 consists of one wish for each criterion.
Each of these wishes assigns the optimal value.

((wish(z1 º1 Cliff diving), 1, {}),
(wish(z2 º2 Mexico), 1, {z1 º1 Cliff diving}),
(wish(z3 ≤ 60), 1, {z2 º2 Mexico}))

When this explanation is presented to the user, she might criticize it by saying
that the vacation region has been penalized too much by its defeater, which
is the wish w1 := wish(z1 º1 Cliff diving). The user therefore adds a wish
w2 := wish(z2 º2 Cote d’Azur) to limit this penalization. This wish needs to get
higher importance than w1 to be effective in all cases. The user therefore adds
the importance statement (w2, w1) as well. This leads to a new solution, namely
σ4 and the following explanation:

((wish(z2 º2 Cote d’Azur), 1, {}),
(wish(z1 º1 Sea Parc), 1, {z2 º2 Cote d’Azur}),
(wish(z2 º2 California), 1, {z1 º1 Sea Parc}),
(wish(z3 ≤ 60), 1, {z2 º2 California}))

Explanations for Pareto-optimal, which consist of sequences of successful wishes,
thus offer new ways to the user to explore the space of Pareto-optimal solutions.

4 Conclusion

We have shown that combinatorial optimization can directly use the original
user preferences even if those preferences are incomplete. The solving process
considers different ways to complete these preferences and optimizes a single
criterion at a time, while exploring different importance orderings of the criteria.
In doing so, the whole optimization process does not only result into an optimal
solution, but also produces an explanation of optimality of the solution. Such
an explanation indicates the conflicts between preferences and shows how they
have been resolved. The user can examine this explanation and either accept the
solution or refine the preference model. The refined preferences will eliminate
the given explanation. If the solution has no further justification, the problem
solver will thus produce another solution and the procedure is repeated.

As explanations are comprehensive and are formulated in the same “lan-
guage” as the optimization problem, the user can react to all elements of the
explanation and change the problem statement. For example, the user can relax
constraints, refine preferences, add importance statements between preferences,
or limit the penalization of the less important criteria. Thanks to the explana-
tions, the problem solver behaviour becomes completely transparent to the user
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and the user gains full control over the problem solver. We thus obtain an in-
teractive problem solving process that consists of optimization, explaining, and
preference elicitation.

As a consequence, the user is freed from tedious tasks such as adjusting the
weights of an additive utility function. As the weights do not appear in any
explanation of optimality, the meaning and effects of the weights are not very
transparent to the user. The choice of the weights may even depend on the form
of the criteria space, thus creating a strong dependence between constraints and
preference model.

For the sake of brevity, we have neither discussed conditional preferences
(cf. [1]), nor algorithms for computing the optimal solutions (cf. [6]). The tuto-
rial [3] shows how other forms of preferences can be characterized in terms of
optimization operators and describes different techniques to compute optimal
solutions.
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