Abstract
Global constraints are used in constraint programming to help users specify patterns that occur frequently in the real world. In addition, global constraints facilitate the use of efficient constraint propagation algorithms for problem solving. Many of the most common global constraints used in constraint programming use filtering algorithms based on network flow theory. We show how we can formulate global constraints such as GCC, Among, and their combinations, in terms of a tractable set-intersection problem called Two Families Of Sets (TFOS). We demonstrate that the TFOS problem allows us to represent tasks that are often difficult to model in terms of a classical constraint satisfaction paradigm. In the final part of the paper we specify some tractable and intractable extensions of the TFOS problem. The contribution of this paper is the characterisation of a general framework that helps us to study the tractability of global constraints that rely on filtering algorithms based on network flow theory.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R., Magnatti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)
Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: IJCAI, pp. 35–40 (2005)
Beldiceanu, N., Contjean, E.: Introducing global constraints in CHIP. Mathematical and Computer Modelling 12, 97–123 (1994)
Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The range and roots constraints: Specifying counting and occurrence problems. In: IJCAI, pp. 60–65 (2005)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press and McGraw-Hill Book Company (2001)
Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
Meisels, A., Schaerf, A.: Modelling and solving employee timetabling problems. Annals of Mathematics and Artificial Intelligence 39, 41–59 (2003)
Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)
Quimper, C.-G., Lopez-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542–556. Springer, Heidelberg (2004)
Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI, pp. 362–367 (1994)
Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: AAAI/IAAI, vol. 1, pp. 209–215 (1996)
Régin, J.-C.: Arc consistency for global cardinality constraints with costs. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 390–404. Springer, Heidelberg (1999)
Régin, J.-C.: Combination of among and cardinality constraints. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005)
Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Razgon, I., O’Sullivan, B., Provan, G. (2008). Generalizing Global Constraints Based on Network Flows. In: Fages, F., Rossi, F., Soliman, S. (eds) Recent Advances in Constraints. CSCLP 2007. Lecture Notes in Computer Science(), vol 5129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89812-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-89812-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89811-5
Online ISBN: 978-3-540-89812-2
eBook Packages: Computer ScienceComputer Science (R0)