
P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 266–274, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Dynamic Orchestration Model for Future Internet
Applications

Giuseppe Avellino2, Mike Boniface1, Barbara Cantalupo2, Justin Ferris1,
Nikolaos Matskanis1, Bill Mitchell1, and Mike Surridge1

1 University of Southampton IT Innovation Centre
2 Venture Road, Chilworth Science Park, Southampton, SO16 7NP
{mjb,nm,bm,ms}@it-innovation.soton.ac.uk

2 Elsag Datamat spa, Via Laurentina 760, 00143, Rome, Italy
{giuseppe.avellino,barbara.cantalupo}@elsagdatamat.com

Abstract. Society and business are demanding systems that can securely and cost-
effectively exploit opportunities presented by an Internet of Services. To achieve
this goal a system must dynamically adapt to its environment and consider multi-
ple and shifting stakeholder concerns such as application functionality, policies
and business processes. In this paper we describe a dynamic orchestration model
called the Virtual Infrastructure Model (VIM) which allows consumers to develop
service-oriented systems that adapt to the needs of different business actors. It is
based on the idea that adaptive workflow and dynamic binding to services can fa-
cilitate abstraction of both business processes and requisite interactions with the
underlying infrastructure. Key requirements for federated orchestration are ad-
dressed including runtime service binding, secure and accountable dynamic pro-
curement, infrastructure adaption, and separation of stakeholder concerns. The
VIM is a fundamental component of the Next Generation Grid Architecture de-
veloped in the context of the EU funded NextGRID project.

Keywords: SOA dynamics, orchestration, lifecycle, workflow, business processes.

1 Introduction

After more than 10 years research and development of service-oriented systems, an
economically viable Internet of Services have yet to materialise. Current software
engineering theories, service specification and composition approaches assume soft-
ware lifecycle models that significantly restrict the potential of service-oriented sys-
tems and the ability of such systems to support meaningful and dynamic social and
economic relationships between communities and business partners.

Service-oriented systems are formed through the “recruitment” of services, possi-
bly provided by different organizations, which are then orchestrated to achieve a de-
sired objective. They cannot be subjected to conventional design “in advance”, so
developers are left to create parts of a system that must fit together in ways that can-
not be anticipated until run-time. Future service-oriented systems will therefore need
to be operated by business stakeholders rather than developed by engineers. To
achieve this operational model new orchestration approaches are required that support

 A Dynamic Orchestration Model for Future Internet Applications 267

multiple stakeholder interactions allowing them to manage the lifecycle of assets and
interact with other stakeholders flexibly and dynamically whilst considering distrib-
uted policy and regulatory compliance.

In this paper we describe an orchestration framework to makes service-oriented
systems adaptable to the needs of different business stakeholders. This framework has
been termed the Virtual Infrastructure Model and has been designed and developed in
the context of EU funded NextGRID project [1]. The architecture is based on the idea
that adaptive workflows and dynamic binding to services can facilitate abstraction of
both business processes and requisite interactions with underlying infrastructure sepa-
rating functional system aspects from the business processes that govern service inter-
actions. A prototype of the VIM has been implemented and reference scenarios in
several application domains have been developed to validate effectiveness of the
approach in real business contexts.

2 Dynamic Service-Oriented Systems

The ability to select and use services from a variety of independent sources and to
integrate them into a system that delivers the functionality and performance desired is
required for dynamic service-oriented systems. In any service-oriented architecture
(SOA) the key functional components are services and systems. The fact that systems
can be considered to be composed of services, which services themselves are pro-
vided by systems, is important. The recursive self-referential characteristic of SOAs is
why they are so powerful. However, it also means that service-oriented systems can
quickly become extremely complex concealing lower level structures from end-users.

The complexity is dramatically increased when systems are built from an Internet
of Services that incorporates a multitude of federations between service consumers
and providers. Business relationships are generally codified in contracts making all
relevant details explicit such as defining what is to be provided at what service level,
relevant business practices and standards to be used, as well as pricing and penalties
for failing to meet the specified conditions. In an Internet of Services, these terms are
expressed in Service Level Agreements (SLAs) that identify the business context for
relationships between systems and services and determine many of the technical poli-
cies that govern the interactions.

Federation is established in service-oriented systems by introducing business proc-
esses that result in federation contexts (SLAs) that provide a link between access to
service and the management the service. To achieve federation in a dynamic way each
of these aspects need to specified separately allowing systems to be built independ-
ently of the business models for provision and procurement of services from which
they are composed. By introducing a separation of concerns, multiple stakeholder
objectives can be supported and used to govern systems as they are operated. In addi-
tion, service providers will host different infrastructures with different business poli-
cies, and this may be true even when they offer the same service functionality. When
consumers need their system to achieve a functional goal services need to be selected
at runtime from multiple, sometimes competing, service providers. It is the dynamic
orchestration of business relationships that supports the delivery of system functional-
ity in a secure, trustworthy and accountable way that will provide an essential enabler
to an economically viable Internet of Services.

268 G. Avellino et al.

3 The Workflow Landscape

Workflow is a critical technology for the orchestration of the interactions between
systems and services. Workflow is important because it can be considered as the pro-
gramming language for service-oriented systems and therefore has the potential to
support process flexibility by soft-coding system behavior. In a SOA context, work-
flow is used to express a composition of services and there are several competing
standards, initiatives and many more proprietary solutions.

The most widely used specifications for describing procedural workflows within
businesses are XPDL [2] and ebXML [3], and the most widely used workflow speci-
fication with reference to SOAs is WSBPEL [4]. The focus of BPEL, and most busi-
ness-oriented workflow languages, is control flow. However, extensive research on
workflow control patterns has shown that all languages have limitations in terms of
what can be easily expressed [5]. This insufficient expressivity and lack of rigorous
semantics significantly limits their ability to support adaptation mechanisms and dy-
namics. Van de Aalst provides an extensive pattern comparison of workflow lan-
guages and implementations. Whilst the post-hoc evaluation of existing workflow
languages against workflow patterns with well defined semantics is useful, it does not
address the problem of inherent lack of rigorous machine-interpretable semantics
within each workflow language.

The semantic web service community, on the other hand, is producing rigorous
models and logics for the semantic description of Web Services. Several European
projects inc. SEKT, DIP, SUPER, ASG are working together through the European
Semantic Systems Initiative and have collaborated to develop the Web Service Mod-
elling Ontology (WSMO) [6] and Web Service Modelling Language (WSML) [7].
Meanwhile work done by academia and industry through SWSI has resulted in the
Semantic Web Service Framework (SWSF) [8], which has both a language (SWSL)
 [9], and an ontology (SWSO) [10] (based on OWL-S) that includes a process model.
These languages and models make workflows more amenable to machine reasoning,
making it easier to create abstract representations of processes and runtime binding to
the services that incorporate the both functionality and QoS.

As far as we can ascertain, very few of the current approaches are considering the
need to consider dynamic stakeholder concerns in workflow orchestration and as far
as we can establish none have attempted to design and implement a complete archi-
tectural model addressing all the issues described in section 3.

4 Virtualised Infrastructure Model

The vision of the VIM is to provide a run-time adaptable infrastructure that meets the
key requirements for dynamic systems operating in an Internet of Services, in particular:

• Run-time bindings: system workflows need not specify a binding of every task to

a specific service, so that the bindings can be chosen at run-time.
• Selective enactment: a single service may provide multiple functions, and it must

be possible to choose which is bound to an abstract task, supported by the service.
• Workflow substitution: some abstract tasks may be bound at run-time to more

detailed workflows that can be inserted into the enactment at run-time. A common

 A Dynamic Orchestration Model for Future Internet Applications 269

example is substitutions with template business operations such as account and
billing workflows.

• Workflow prioritization: Critical processes, which are either expensive in re-
sources or define the result or the performance of the workflow, must have high
priority in the evaluation order.

A key feature of the VIM’s approach is the abstraction of business processes so

developers do not have to encode business processes explicitly in their systems. This
allows systems to remain functional even if a service provider wants to use a different
business model or process (e.g. pay-as-you-go instead of subscription-based access to
services). The result is a workflow enactment model with a corresponding workflow
enactment engine that provides a way to dynamically assemble system functionality
using an abstract application workflow specification as a starting point, and introduc-
ing business processes at run-time as specified by the service providers and consum-
ers involved in executing the application.

The capability is achieved by combining adaptive semantic workflow, semantic
discovery and service selection heuristics with supporting business and security ser-
vices that govern functional services. System logic can be captured with abstract “ap-
plication workflows” that include the functional constraints of the system. Service
providers can publish workflows to describe the interactions and preconditions neces-
sary for a consumer to use their service. During workflow execution, abstract tasks
are resolved to concrete implementations including business process steps through a
process that includes discovery, selection and rewiring, before execution.

4.1 Workflow Enactment Model

The overall enactment model for the VIM is illustrated in Figure 1. At its core the VIM
provides an Enactor that is based on "evaluate - apply" cycles, as used in functional

Fig. 1. VIM Enactment Model

270 G. Avellino et al.

programming. The aim of the evaluation is to replace abstract service descriptions with
concrete services at runtime using components of the environment. Evaluation produces
“concrete” processes that are either concrete Application Services or sub-workflows,
which may contain abstract processes that also need to be evaluated. The apply phase
that follows, executes the realized concrete processes. The evaluation algorithm in-
cludes four phases: prioritisation, candidate discovery, federation context acquisition,
and candidate selection.

The evaluation order of a set of abstract processes in a workflow is determined by
both enactor evaluation policies and prioritisation. Evaluation policies dictate whether to
perform lazy or eager evaluation of conditional expressions, or when and how to fully
evaluate nested composite workflows. Prioritization assigns priority weights to the
workflow graph. Abstract processes with highest priority are evaluated first. Abstract
processes that share the same priority level are evaluated together. Prioritisation helps
the enactor to locate problems with availability of bindings for the abstract processes on
critical parts of the workflow (e.g. missing SLAs). It also allows the enactor to to opti-
mize execution by considering dependencies and data/control constraints.

Once prioritisation is completed candidate bindings for abstract processes are dis-
covered from one or more Registry Services within the consumer’s organisation.

In order to execute a candidate a consumer may need to acquire a federation con-
text from supporting Security and Business Services. For example, if a SLA cannot
be found, the enactor will use negotiation to establish a new SLA. SLA negotiations
may also be required if service discovery fails to find any candidates. The negotiation
of new SLAs can then allow access to more services, and when the SLA is agreed
these services are added to the candidates list.

Fig. 2. Enactment Engine

 A Dynamic Orchestration Model for Future Internet Applications 271

Lastly the run-time binding of each abstract task to one of the candidates is deter-
mined using Decision services that apply selection heuristics and local organization
policies. Selection operates across the whole workflow and may take account of co-
location and other constraints. After selection of a candidate, replacement is made by
rewiring the workflow and the (“Apply”) phase is executes the task.

The workflow representation language that we adopted to represent workflows is
OWL-WS. OWL-WS stands for “OWL for Workflows and Services” and is a work-
flow (and service) ontology fully based on OWL-S [11]. OWL-WS extends the OWL-
S concept of Service to Abstract Process (an Atomic Process without implementation
information), and uses the OWL-S concept of Composite Process for workflow mod-
elling. In OWL-WS, Profile is available to any Process providing the ability to repre-
sent information at any level of the workflow composition. A more detailed descrip-
tion of the language is provided in [12]. A detailed model of the VIM can be seen in
Figure 2.

4.2 Workflow Enactment Engine

The workflow enactment model has been implemented by integrating a range of ser-
vice-oriented technologies. The Enactor is based on the Mindswap OWL-S API
[13],which supports representation and enactment of OWL-S elements. Mindswap
was extended to provide additional features to support OWL-WS extensions, and
more complex and dynamic eval/apply execution semantics.

The evaluation order of an Abstract Process can be set both manually by the work-
flow author and automatically by the Prioritizer component. The Prioritizer uses QoS
and historical information to assign evaluation priorities to those abstract processes
that have not yet been prioritised. The Discoverer component looks for candidate
bindings for an abstract process starting from its Profile. The Profile expresses con-
straints on the discovery process, effectively encapsulating a query that should be
used to locate candidates. Discovery is performed by querying service registries that
are located in the consumer’s domain. This registry implementation is based on the
Globus GT4 implementation of the WSRF-SG specification, and supports the XPath
query language [14].

Federation context acquisition is implemented using the SLA Discovery and Bro-
ker components. The SLA Discovery component retrieves SLAs from a SLA registry.
Many concrete services can only be executed under an agreement with the service
provider, so an SLA reference is essential for the execution of these services. Negotia-
tion of new SLAs with service providers is performed by means of the Broker com-
ponent. The broker uses service provider registries to look for advertised services that
fulfill consumer requirements. Once these have been decided the negotiation process
takes place in order to establish a new SLA. The SLA that is produced is then regis-
tered to the SLA Registry followed by an update to the application service registry to
register new service functionality that has been procured. The current Broker imple-
mentation consists of five components: the Matchmaker, the Negotiator, the Recon-
ciler, the Template Retriever, and the Deal Closer and is described in detail in [15].

272 G. Avellino et al.

Fig. 3. VIM Components

The final selection of service bindings is performed by a Selector component. The
selection process involves choosing a single candidate for each Abstract Process from
the set of candidates found in the discovery phase. The selector implements an algo-
rithm that takes into account criteria taken from an SLA, historical data and service
parameters. User hints may also influence the selection. In order to determine the best
from the available candidates for each step the selector takes into account services
selected in other nodes of the workflow. The enactor gathers information of the ser-
vice performance under a SLA, and can then be submitted to a Quality of Experience
analysis service if the user so chooses. The QoE analysis can then also be used to
produce criteria for the Selector component, based on previous experience of the
candidate service providers [16].

Apart from the evaluation components the enactor uses Groundings to infrastruc-
ture implementations. These Groundings encapsulate the information required to
construct and send appropriate messages to services and other executable components
that are external to the Enactor. The WSDL and Java groundings enable Web Service
and local service invocations. The GRIA grounding supports services hosted by the
GRIA middleware [17], while the NextGRID grounding provides similar functional-
ity but supports NextGRID specifications for SLAs and exchanged messages.

5 Real Context Experiments

The VIM architecture has been verified by architectural experiments and used in
reference applications within the NextGRID project [18]. These applications include:

• Digital Media (DM): This application uses workflows that consume Rendering
services for a for a television advertising company.

• Electronic Data Record (EDR). This application uses Grid services for a telecom-
munications company.

In the following paragraph we chose to analyse the Digital Media experiment. In
the DM scenario, users want to run video rendering application workflows that have

 A Dynamic Orchestration Model for Future Internet Applications 273

been written with the OWL-WS workflow-authoring tool by the application system
experts. These workflows are abstract. The users have control over which workflow
to use, over its input data and over the parameters for the execution through a web-
portal. Parameters can specify preferences on price, availability, required time or
other business factors. The application workflow in this scenario is shown in Figure 4:

Rendering
Service

Textures
Compilation

Service

Shaders
Compilation

Service

Input Data Output Data

Fig. 4. 3D Video Rendering Scenario

Each of the abstract processes in this workflow is resolved by discovery and selec-
tion to a concrete application process with the SLA EPR information. The discovery
performed in an order defined by the prioritiser implementation and the selection is
taking into account the SLA terms, user preferences and Quality of Experience analy-
sis results. The selection is done through out the workflow to take into account co-
allocation issues according to the selector implementation.

This experiment demonstrated the ability of the system, through its user interface,
to setup the environment of VIM infrastructure and enact abstract workflows of the
video rendering application with different inputs and parameters. By changing the
QoE parameters, users influenced selection and led to different concrete workflows
that had different business models. In any case the abstract processes were evaluated
by the VIM and concrete workflows with business management rules and policies
were successfully enacted using NextGRID compliant application services.

6 Conclusions and Future Outlook

In this paper we presented an orchestration architecture for Future Internet applica-
tions based on a dynamic and adaptive workflow model. The architecture addresses
the key requirements for service-oriented systems operating in an Internet of Services
(runtime binding to services, secure and accountable dynamic procurement, infra-
structure adaption, and separation of stakeholder concerns). A prototype workflow
engine with related components has been developed and validated in significant busi-
ness applications demonstrating how the lifecycle of system functionality and busi-
ness processes governing underlying services can be separated.

The current implementation is limited to adapting consumer systems to service pro-
vider business processes by injecting these processes into application workflows at run-
time. As we move towards an Internet of Services, consumers require systems that deal
with the increased complexity and allow them to assess and mitigate threats in a more
open world. To deal with these issues multiple business stakeholders (operations, finance,
legal, quality, and marketing) will govern interactions and will work together to achieve an
overall business objective. Effectively the atomic view of a consumer or service provider
business process will be insufficient as multiple consumers will need to orchestrate their

274 G. Avellino et al.

perspectives in goal-oriented event driven approach. This will require more fine-grained
adaptive workflows to manage the lifecycle of different aspects of systems and services.

The creation and governance of applications of service-oriented infrastructures
must become much easier for all stakeholders as the diversity and scale of assets dra-
matically increases, especially for applications that span multiple administrative
domains. The VIM orchestration model introduces dynamics into service-oriented
systems in a way that could not be previously achieved. Future work will continue to
focus on orchestrating federations and will examine how the VIM model can be en-
hanced by applying functional programming and process algebra approaches to dy-
namic service composition and agent-based functionality in decision services.

References

1. Next Generation GRIDs Expert Group Report 3, Future for European Grids: GRIDs and Ser-
vice Oriented Knowledge Utilities (January 2006)

2. Workflow Management Coalition Workflow Standard, XML Process Definition Language
(XPDL), Document Number WFMC-TC-1205 FINAL: Version 2.0, October 3 (2005)

3. OASIS standard v2.0.4, ebXML Business Process Specification Schema Technical Specifi-
cation v2.0.4 (December 2006)

4. Alves, A., et al. (eds.): Web Services Business Process Execution Language Version 2.0,
OASIS Committee Specification (January 2007)

5. Workflow Control-Flow Patterns A Revised View. Nick Russell, Arthur H.M. ter Hofstede
(BPM Group, Queensland University of Technology) and Wil M.P. van der Aalst, Nataliya
Mulyar (Department of Technology Management, Eindhoven University of Technology)

6. http://www.wsmo.org/
7. http://www.wsmo.org/wsml/
8. http://www.w3.org/Submission/SWSF/
9. http://www.w3.org/Submission/SWSF-SWSL/

10. http://www.daml.org/services/swsf/1.0/swso/
11. Martin, D. (ed.): OWL-S: Semantic Markup for Web Services, W3C Member submission

(November 2004)
12. Beco, S., Cantalupo, B., Giammarino, L., Matskanis, N., Surridge, M.: OWL-WS: A Work-

flow Ontology for Dynamic Grid Service Composition. In: 1st Int. Conf. on e-Science and
Grid Computing (2005)

13. See Mindswap OWL-S API project,
 http://www.mindswap.org/2004/owl-s/api/

14. Hasselmeyer, P.: On Service Discovery Process Types. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 144–156. Springer, Heidelberg
(2005)

15. Hasselmeyer, P., et al.: Towards Autonomous Brokered SLA Negotiation. In: Paul, Cun-
ningham, M. (eds.) Exploiting the Knowledge Economy - Issues, Applications, Case Studies,
vol. 3. IOS Press, Amsterdam (2006)

16. McKee, P., Taylor, S.J., Surridge, M., Lowe, R., Ragusa, C.: Strategies for the Service
Marketplace. In: Veit, D.J., Altmann, J. (eds.) GECON 2007. LNCS, vol. 4685, pp. 58–70.
Springer, Heidelberg (2007)

17. GRIA Middleware for Service Oriented Collaborations for Industry and Commerce,
http://www.gria.org/

18. NextGRID application fliers, Digital Media application, http://www.nextgrid.org/
download/flyers/NextGRID%20Digital%20Media%20Flyer.pdf, Electronic
Data Records application, http://www.nextgrid.org/download/flyers/
NextGRID%20Digital%20Media%20Flyer.pdf

	A Dynamic Orchestration Model for Future Internet Applications
	Introduction
	Dynamic Service-Oriented Systems
	The Workflow Landscape
	Virtualised Infrastructure Model
	Workflow Enactment Model
	Workflow Enactment Engine

	Real Context Experiments
	Conclusions and Future Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

