Skip to main content

A Hybrid Promoter Analysis Methodology for Prokaryotic Genomes

  • Chapter
Fuzzy Systems in Bioinformatics and Computational Biology

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 242))

  • 935 Accesses

Summary

One of the biggest challenges in genomics is the elucidation of the design principles controlling gene expression. Current approaches examine promoter sequences for particular features, such as the presence of binding sites for a transcriptional regulator, and identify recurrent relationships among these features termed network motifs. To define the expression dynamics of a group of genes, the strength of the connections in a network must be specified, and these are determined by the cis-promoter features participating in the regulation. Approaches that homogenize features among promoters (e.g., relying on consensuses to describe the various promoter features) and even across species hamper the discovery of the key differences that distinguish promoters that are co-regulated by the same transcriptional regulator. Thus, we have developed a model-based approach to analyze proteobacterial genomes for promoter features that is specifically designed to account for the variability in sequence, location and topology intrinsic to differential gene expression. We applied our method to characterize network motifs controlled by the PhoP/PhoQ regulatory system of Escherichia coli and Salmonella enterica serovar Typhimurium. We identify key features that enable the PhoP protein to produce distinct kinetic patterns in target genes, which could not have been uncovered just by inspecting network motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, T.L., Elkan, C.: The value of prior knowledge in discovering motifs with MEME. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 3, pp. 21–29 (1995)

    Google Scholar 

  2. Barnard, A., Wolfe, A., Busby, S.: Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr. Opin. Microbiol. 7, 102–108 (2004)

    Article  Google Scholar 

  3. Beer, M.A., Tavazoie, S.: Predicting gene expression from sequence. Cell 117, 185–198 (2004)

    Article  Google Scholar 

  4. Benitez-Bellon, E., Moreno-Hagelsieb, G., Collado-Vides, J.: Evaluation of thresholds for the detection of binding sites for regulatory proteins in Escherichia coli K12 DNA. Genome. Biol. 3, RESEARCH0013 (2002)

    Article  Google Scholar 

  5. Bezdek, J.C.: Pattern analysis. In: Ruspini, E.H., Pedrycz, W., Bonissone, P.P. (eds.) Handbook of Fuzzy Computation, pp. F6.1.1–F6.6.20. Institute of Physics, Bristol (1998)

    Google Scholar 

  6. Bezdek, J.C., Pal, S.K.: Fuzzy models for pattern recognition: methods that search for structures in data. IEEE Press, New York (1992)

    Google Scholar 

  7. Cipra, B.: Mathematicians offer answers to everyday conundrums. Science 283, 927–935 (1999)

    Article  Google Scholar 

  8. Collado-Vides, J., Magasanik, B., Gralla, J.D.: Control site location and transcriptional regulation in Escherichia coli. Microbiol. Rev. 55, 371–394 (1991)

    Google Scholar 

  9. Cotik, V., Zaliz, R.R., Zwir, I.: A hybrid promoter analysis methodology for prokaryotic genomes. Fuzzy Sets and Systems 152, 83–102 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cuesta, F., Gomez-Bravo, A., Ollero, A.: Parking maneuvers of industrial-like electrical vehicles with and without trailer. IEEE Transactions on Industrial Electronics 51, 257–269 (2004)

    Article  Google Scholar 

  11. Eguchi, Y., Okada, T., Minagawa, S., Oshima, T., Mori, H., Yamamoto, K., Ishihama, A., Utsumi, R.: Signal Transduction Cascade between EvgA/EvgS and PhoP/PhoQ Two-Component Systems of Escherichia coli. J. Bacteriol. 186, 3006–3014 (2004)

    Article  Google Scholar 

  12. Everitt, B., Der, G.: A handbook of statistical analysis using SAS. Chapman & Hall, London (1996)

    Google Scholar 

  13. Gasch, A.P., Eisen, M.B.: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome. Biol. 3, RESEARCH0059 (2002)

    Google Scholar 

  14. Grainger, D.C., Overton, T.W., Reppas, N., Wade, J.T., Tamai, E., Hobman, J.L., Constantinidou, C., Struhl, K., Church, G., Busby, S.J.: Genomic studies with Escherichia coli MelR protein: applications of chromatin immunoprecipitation and microarrays. J. Bacteriol. 186, 6938–6943 (2004)

    Article  Google Scholar 

  15. Groisman, E.A.: The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183, 1835–1842 (2001)

    Article  Google Scholar 

  16. Groisman, E.A., Heffron, F., Solomon, F.: Molecular genetic analysis of the Escherichia coli phoP locus. J. Bacteriol. 174, 486–491 (1992)

    Google Scholar 

  17. Harley, C.B., Reynolds, R.P.: Analysis of E. coli promoter sequences. Nucleic Acids Res. 15, 2343–2361 (1987)

    Article  Google Scholar 

  18. Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15, 563–577 (1999)

    Article  Google Scholar 

  19. http://gps-tools2.wustl.edu

  20. Ishihama, A.: Protein-protein communication within the transcription apparatus. J. Bacteriol. 175, 2483–2489 (1993)

    Google Scholar 

  21. Kato, A., Groisman, E.A.: Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes. Dev. 18, 2302–2313 (2004)

    Article  Google Scholar 

  22. Kato, A., Latifi, T., Groisman, E.A.: Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc. Natl. Acad. Sci. USA 100, 4706–4711 (2003)

    Article  Google Scholar 

  23. Klir, G.J., Folger, T.A.: Fuzzy sets, uncertainty, and information. Prentice Hall International, London (1988)

    MATH  Google Scholar 

  24. Latifi, Y.S.N.S.T., Cromie, M.J., Groisman, E.A.: Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J. Biol. Chem. 279, 38618–38625 (2004)

    Article  Google Scholar 

  25. Lejona, S., Aguirre, A., Cabeza, M.L., Garcia Vescovi, E., Soncini, F.C.: Molecular characterization of the Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica. J. Bacteriol. 185, 6287–6294 (2003)

    Article  Google Scholar 

  26. Leung, T.H., Hoffmann, A., Baltimore, D.: One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 118, 453–464 (2004)

    Article  Google Scholar 

  27. Pritsker, M., Liu, Y.C., Beer, M.A., Tavazoie, S.: Whole-genome discovery of transcription factor binding sites by network-level conservation. Genome Research, 99–108 (2004)

    Google Scholar 

  28. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 100, 11980–11985 (2003)

    Article  Google Scholar 

  29. Martinez-Antonio, A., Collado-Vides, J.: dentifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol. 6, 482–489 (2003)

    Article  Google Scholar 

  30. McCue, L., Thompson, W., Carmack, C., Ryan, M.P., Liu, J.S., Derbyshire, V., Lawrence, C.E.: Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic Acids Res. 29, 774–782 (2001)

    Article  Google Scholar 

  31. McLeod, S.M., Aiyar, S.E., Gourse, R.L., Johnson, R.C.: The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J. Mol. Biol. 12, 517–529 (2002)

    Article  Google Scholar 

  32. Minagawa, S., Ogasawara, H., Kato, A., Yamamoto, K., Eguchi, Y., Oshima, T., Mori, H., Ishihama, A., Utsumi, R.: Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J. Bacteriol. 185, 3696–3702 (2003)

    Article  Google Scholar 

  33. Mitchell, T.M.: Machine learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  34. Mouslim, C., Latifi, T., Groisman, E.A.: Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J. Biol. Chem. 278, 50588–50595 (2003)

    Article  Google Scholar 

  35. Perron-Savard, P., De Crescenzo, G., Le Moual, H.: Dimerization and DNA binding of the Salmonella enterica PhoP response regulator are phosphorylation independent. Microbiology 151, 3979–3987 (2005)

    Article  Google Scholar 

  36. Robison, K., McGuire, A.M., Church, G.M.: A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J. Mol. Biol. 284, 241–254 (1998)

    Article  Google Scholar 

  37. Rosenblueth, D.A., Thieffry, D., Huerta, A.M., Salgado, H., Collado-Vides, J.: Syntactic recognition of regulatory regions in Escherichia coli. Comput. Appl. Biosci. 12, 415–422 (1996)

    Google Scholar 

  38. Ruspini, E.H., Zwir, I.: Automated generation of qualitative representations of complex objects by hybrid soft-computing methods. In: Pal, S.K., Pal, A. (eds.) Pattern recognition: from classical to modern approaches, pp. 454–474. World Scientific, New Jersey (2002)

    Google Scholar 

  39. Salgado, H., Gama-Castro, S., Martinez-Antonio, A., Diaz-Peredo, E., Sanchez-Solano, F., Peralta-Gil, M., Garcia-Alonso, D., Jimenez-Jacinto, V., Santos-Zavaleta, A., Bonavides-Martinez, C., Collado-Vides, J.: RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res. 32, D303–D306 (2004)

    Article  Google Scholar 

  40. Salgado, H., Santos-Zavaleta, A., Gama-Castro, S., Millan-Zarate, D., Diaz-Peredo, E., Sanchez-Solano, F., Perez-Rueda, E., Bonavides-Martinez, C., Collado-Vides, J.: RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res. 29, 72–74 (2001)

    Article  Google Scholar 

  41. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York (1989)

    Google Scholar 

  42. Schechter, L.M., Damrauer, S.M., Lee, C.A.: Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol. Microbiol. 32, 629–642 (1999)

    Article  Google Scholar 

  43. Lobell, R.B., Schleif, R.F.: AraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein. J. Mol. Biol. 218, 45–54 (1991)

    Article  Google Scholar 

  44. Snavely, M.D., Gravina, S.A., Cheung, T.T., Miller, C.G., Maguire, M.E.: Magnesium transport in salmonella typhimurium. Regulation of mgtA and mgtB expression. J. Biol. Chem. 266, 824–829 (1991)

    Google Scholar 

  45. Soncini, F.C., Garcia Vescovi, E., Solomon, F., Groisman, E.A.: Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J. Bacteriol. 178, 5092–5099 (1996)

    Google Scholar 

  46. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)

    Article  Google Scholar 

  47. Sugeno, M., Yasukama, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1, 7–31 (1993)

    Article  Google Scholar 

  48. Teichmann, S.A., Babu, M.M.: Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends Biotechnol. 20, 407–410 (2002)

    Article  Google Scholar 

  49. Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov, A.V., Frith, M.C., Fu, Y., Kent, W.J.W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., Zhu, Z.: Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23, 137–144 (2005)

    Article  Google Scholar 

  50. Tu, X., Latifi, T., Bougdour, A., Gottesman, S., Groisman, E.A.: The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc. Natl. Acad. Sci. USA 103, 13503–13508 (2006)

    Article  Google Scholar 

  51. Winfield, M.D., Groisman, E.A.: Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc. Natl. Acad. Sci. USA 101, 17162–17167 (2004)

    Article  Google Scholar 

  52. Ye, Z.: Artificial-intelligence approach for biomedical sample characterization using Raman spectroscopy. IEEE Transactions on Automation Science and Engineering 2, 67–73 (2005)

    Article  Google Scholar 

  53. Zwir, I., Shin, D., Kato, A., Nishino, K., Latifi, T., Solomon, F., Hare, J.M., Huang, H., Groisman, E.A.: Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc. Natl. Acad. Sci. USA 102, 2862–2867 (2005)

    Article  Google Scholar 

  54. Zwir, I., Zaliz, R.R., Ruspini, E.H.: Automated biological sequence description by genetic multiobjective generalized clustering. Ann. N. Y. Acad. Sci. 980, 65–82 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harari, O., Herrera, L., Zwir, I. (2009). A Hybrid Promoter Analysis Methodology for Prokaryotic Genomes. In: Jin, Y., Wang, L. (eds) Fuzzy Systems in Bioinformatics and Computational Biology. Studies in Fuzziness and Soft Computing, vol 242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89968-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89968-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89967-9

  • Online ISBN: 978-3-540-89968-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics