Skip to main content

On the Efficient Execution of ProbLog Programs

  • Conference paper
Logic Programming (ICLP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5366))

Included in the following conference series:

Abstract

The past few years have seen a surge of interest in the field of probabilistic logic learning or statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with mutually independent probabilities that they belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64, 81–129 (1993)

    Article  MATH  Google Scholar 

  2. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. (JAIR) 15, 391–454 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) ILP (1995)

    Google Scholar 

  4. Lakshmanan, L.V.S., Leone, N., Ross, R.B., Subrahmanian, V.S.: ProbView: A flexible probabilistic database system. ACM Trans. Database Syst. 22(3), 419–469 (1997)

    Article  Google Scholar 

  5. Santos Costa, V., Page, D., Qazi, M., Cussens, J.: CLP(BN): constraint logic programming for probabilistic knowledge. In: Meek, C., Kjærulff, U. (eds.) UAI, pp. 517–524. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  6. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In: CIDR, pp. 262–276 (2005)

    Google Scholar 

  8. Fuhr, N.: Probabilistic Datalog: Implementing logical information retrieval for advanced applications. JASIS 51(2), 95–110 (2000)

    Article  MathSciNet  Google Scholar 

  9. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 864–875. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  10. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its application in link discovery. In: Veloso, M.M. (ed.) IJCAI, pp. 2462–2467 (2007)

    Google Scholar 

  11. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in graphs derived from biological databases. In: Leser, U., Naumann, F., Eckman, B.A. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 35–49. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) ICLP, pp. 715–729. MIT Press, Cambridge (1995)

    Google Scholar 

  13. Dantsin, E.: Probabilistic logic programs and their semantics. In: Voronkov, A. (ed.) RCLP 1990 and RCLP 1991. LNCS, vol. 592, pp. 152–164. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  14. Poole, D.: Abducing through negation as failure: stable models within the independent choice logic. J. Log. Program. 44(1-3), 5–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  16. Poole, D.: Logic programming, abduction and probability. New Generation Computing 11, 377–400 (1993)

    Article  MATH  Google Scholar 

  17. Kimmig, A., De Raedt, L., Toivonen, H.: Probabilistic explanation based learning. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds.) ECML 2007. LNCS, vol. 4701, pp. 176–187. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1989)

    MATH  Google Scholar 

  19. Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter learning in probabilistic databases: A least squares approach. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS, vol. 5211, pp. 473–488. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing probabilistic Prolog programs. Machine Learning 70(2-3), 151–168 (2008)

    Article  MATH  Google Scholar 

  21. Kimmig, A., De Raedt, L.: Probabilistic local pattern mining. In: ILP (2008)

    Google Scholar 

  22. Riguzzi, F.: A top down interpreter for LPAD and CP-logic. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS, vol. 4733, pp. 109–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L. (2008). On the Efficient Execution of ProbLog Programs. In: Garcia de la Banda, M., Pontelli, E. (eds) Logic Programming. ICLP 2008. Lecture Notes in Computer Science, vol 5366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89982-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89982-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89981-5

  • Online ISBN: 978-3-540-89982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics