
A Folding Algorithm for
Eliminating Existential Variables from

Constraint Logic Programs

Valerio Senni1, Alberto Pettorossi1, and Maurizio Proietti2

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
{senni,pettorossi}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. The existential variables of a clause in a constraint logic pro-
gram are the variables which occur in the body of the clause and not in
its head. The elimination of these variables is a transformation technique
which is often used for improving program efficiency and verifying pro-
gram properties. We consider a folding transformation rule which ensures
the elimination of existential variables and we propose an algorithm for
applying this rule in the case where the constraints are linear inequa-
tions over rational or real numbers. The algorithm combines techniques
for matching terms modulo equational theories and techniques for solv-
ing systems of linear inequations. We show that an implementation of
our folding algorithm performs well in practice.

1 Introduction

Constraint logic programming is a very expressive language for writing programs
in a declarative way and for specifying and verifying properties of software sys-
tems [1]. When writing programs in a declarative style or writing specifications,
one often uses existential variables, that is, variables which occur in the body of
a clause and not in its head. For instance, the formula ∀N (N >0 → p(N)), spec-
ifying “the predicate p(N) holds for every positive number N”, can be written
by using the following two clauses:

prop ← ¬q q ← N > 0 ∧ ¬p(N)
where N is an existential variable. However, the use of existential variables may
give rise to inefficient or even nonterminating computations (and this may hap-
pen when an existential variable denotes an intermediate data structure or when
an existential variable ranges over an infinite set). For this reason some trans-
formation techniques have been proposed for eliminating those variables from
logic programs and constraint logic programs [2,3]. In particular, in [3] it has
been shown that by eliminating the existential variables from a constraint logic
program defining a nullary predicate, like prop above, one may obtain a propo-
sitional program and, thus, decide whether or not that predicate holds.

The transformation techniques for the elimination of the existential variables
make use of the unfolding and folding rules which have been first proposed in the

context of functional programming by Burstall and Darlington [4], and then ex-
tended to logic programming [5,6] and to constraint logic programming [7,8,9,10].
In the techniques for eliminating existential variables a particularly relevant role
is played by the folding rule, which can be defined as follows.

Let (i) H and K be atoms, (ii) c and d be constraints, and (iii) G and B
be goals (that is, conjunctions of literals). Given two clauses γ: H ← c ∧ G
and δ: K ← d ∧ B, if there exist a constraint e, a substitution ϑ, and a goal
R such that H ← c ∧ G is equivalent (w.r.t. a given theory of constraints) to
H ← e ∧ (d ∧ B)ϑ ∧ R, then γ is folded into the clause η: H ← e ∧ Kϑ ∧ R.
In order to use the folding rule to eliminate existential variables we also require
that the variables occurring in Kϑ are a subset of the variables occurring in H.

In the literature, no algorithm is provided to determine whether or not, given
a theory of constraints, the suitable e, ϑ, and R which are required for folding,
do exist. In this paper we propose an algorithm based on linear algebra and
term rewriting techniques for computing e, ϑ, and R, if they exist, in the case
when the constraints are linear inequations over the rational numbers (however,
the techniques we will present are valid without relevant changes also when the
inequations are over the real numbers).

For instance, let us consider the clauses:
γ: p(X1, X2, X3) ← X1 <1 ∧X1≥Z1+1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
δ: s(Y1, Y2, Y3) ← W1 <0 ∧ Y1−3≥2W1 ∧W2 >0 ∧ q(W1, Y3, W2)
and suppose that we want to fold γ using δ for eliminating the existential vari-
ables Z1 and Z2 occurring in γ. Our folding algorithm FA computes (see Ex-
amples 1–3 in Section 4): (i) the constraint e: X1 < 1, (ii) the substitution ϑ:
{Y1/2X1+1, Y2/a, Y3/f(X3),W1/Z1,W2/Z2}, where a is an arbitrary constant,
and (iii) the goal R: r(X2), and the clause derived by folding γ using δ is:
η: p(X1, X2, X3) ← X1 <1 ∧ s(2X1+1, a, f(X3)) ∧ r(X2)
which has no existential variables. (The correctness of this folding can easily be
checked by unfolding η w.r.t. s(2X1+1, a, f(X3)).) In general, there may be zero
or more triples 〈e, ϑ,R〉 that satisfy the conditions for the applicability of the
folding rule. For this reason, our folding algorithm is nondeterministic and in
different runs it may compute different folded clauses.

The paper is organized as follows. In Section 2 we introduce some basic
definitions concerning constraint logic programs. In Section 3 we present the
folding rule which we use for eliminating existential variables. In Section 4 we
describe our algorithm for applying the folding rule and we prove the soundness
and completeness of this algorithm with respect to the declarative specification of
the rule. In Section 5 we analyze the complexity of our folding algorithm. We also
describe an implementation of that algorithm and we present an experimental
evaluation of its performance. Finally, in Section 6 we discuss related work and
we suggest some directions for future investigations.

2 Preliminary Definitions

In this section we recall some basic definitions concerning constraint logic pro-
grams, where the constraints are conjunctions of linear inequations over the ra-

2

tional numbers. As already mentioned, the results we will present in this paper
are valid also when the constraints are conjunctions of linear inequations over
the real numbers. For notions not defined here the reader may refer to [1,11].

Let us consider a first order language L given by a set Var of variables, a
set Fun of function symbols, and a set Pred of predicate symbols. Let + denote
addition, · denote multiplication, and Q denote the set of rational numbers. We
assume that {+, ·} ∪Q ⊆ Fun (in particular, every rational number is assumed
to be a 0-ary function symbol). We also assume that the predicate symbols ≥
and > denoting inequality and strict inequality, respectively, belong to Pred .

In order to distinguish terms representing rational numbers from other terms
(which, in general, may be considered as finite trees), we assume that L is a typed
language [11] with two basic types: rat, which is the type of rational numbers,
and tree, which is the type of finite trees. We also consider types constructed
from basic types by using the type constructors × and →. A variable X ∈ Var
has either type rat or type tree. We denote by Varrat and Vartree the set
of variables of type rat and tree, respectively. A predicate symbol of arity n
and a function symbol of arity n in L have types of the form τ1×· · ·×τn and
τ1×· · ·×τn→ τn+1, respectively, for some types τ1, . . . , τn, τn+1 ∈ {rat, tree}.
In particular, the predicate symbols ≥ and > have type rat×rat, the function
symbols + and · have type rat×rat → rat, and the rational numbers have
type rat. The function symbols in {+, ·} ∪ Q are the only symbols whose type
is τ1× · · · ×τn→rat, for some types τ1, . . . , τn, with n ≥ 0.

A term u is either a term of type rat or a term of type tree. A term p of
type rat is a linear polynomial of the form a1X1 + . . . + anXn + an+1, where
a1, . . . , an+1 are rational numbers and X1, . . . , Xn are variables in Varrat (a
monomial of the form aX stands for the term a ·X). A term t of type tree is
either a variable X in Vartree or a term of the form f(u1, . . . , un), where f is a
function symbol of type τ1× · · · ×τn → tree, and u1, . . . , un are terms of type
τ1, . . . , τn, respectively.

An atomic constraint is a linear inequation of the form p1 ≥ p2 or p1 > p2. A
constraint is a conjunction c1 ∧ . . .∧ cn, where c1, . . . , cn are atomic constraints.
When n = 0 we write c1∧. . .∧cn as true. A constraint of the form p1≥p2 ∧ p2≥p1

is abbreviated as the equation p1 =p2 (which, thus, is not an atomic constraint).
We denote by LIN Q the set of all constraints.

An atom is of the form r(u1, . . . , un), where r is a predicate symbol, not in
{≥, >}, of type τ1×. . .×τn and u1, . . . , un are terms of type τ1, . . . , τn, respec-
tively. A literal is either an atom (called a positive literal) or a negated atom
(called a negative literal). A goal is a conjunction L1 ∧ . . . ∧ Ln of literals, with
n ≥ 0. Similarly to the case of constraints, the conjunction of 0 literals is denoted
by true. A constrained goal is a conjunction c∧G, where c is a constraint and G
is a goal. A clause is of the form H ← c∧G, where H is an atom and c∧G is a
constrained goal. A constraint logic program is a set of clauses. A formula of the
language L is constructed as usual in first order logic from the symbols of L by
using the logical connectives ∧, ∨, ¬, →, ←, ↔, and the quantifiers ∃, ∀.

3

If e is a term or a formula then by Varsrat(e) and Varstree(e) we denote,
respectively, the set of variables of type rat and of type tree occurring in e. By
Vars(e) we denote the set of all variables occurring in e, that is, Varsrat(e) ∪
Varstree(e). Similar notation will also be used for sets of terms or sets of formulas.
Given a clause γ: H ← c ∧ G, by EVars(γ) we denote the set of the existential
variables of γ, that is, Vars(c ∧ G) − Vars(H). The constraint-local variables
of γ are the variables in the set Vars(c) − Vars({H, G}). Given a set X =
{X1, . . . , Xn} of variables and a formula ϕ, by ∀X ϕ we denote the formula
∀X1 . . . ∀Xn ϕ and by ∃X ϕ we denote the formula ∃X1 . . . ∃Xn ϕ. By ∀(ϕ) and
∃(ϕ) we denote the universal closure and the existential closure of ϕ, respectively.
In what follows we will use the notion of substitution as defined in [11] with
the following extra condition: for any substitution {X1/t1, . . . , Xn/tn}, for i =
1, . . . , n, the type of Xi is equal to the type of ti.

Let Lrat denote the sublanguage of L given by the set Varrat of variables,
the set {+, ·} ∪Q of function symbols, and the set {≥, >} of predicate symbols.
We denote by Q the interpretation which assigns to every function symbol or
predicate symbol of Lrat the usual function or relation on Q. For a formula ϕ of
Lrat (in particular, for a constraint), the satisfaction relation Q |= ϕ is defined as
usual in first order logic. A Q-interpretation is an interpretation I for the typed
language L which agrees with Q for each formula ϕ of Lrat, that is, for each ϕ of
Lrat, I |= ϕ iff Q |= ϕ. The definition of a Q-interpretation for typed languages
is a straightforward extension of the one for untyped languages [1]. We say that
a Q-interpretation I is a Q-model of a program P if for every clause γ ∈ P
we have that I |= ∀(γ). Similarly to the case of logic programs, we can define
stratified constraint logic programs and we have that every such program P has
a perfect Q-model [1,7,10], denoted by M(P).

A solution of a set C of constraints is a ground substitution σ of the form
{X1/a1, . . . , Xn/an}, where {X1, . . . , Xn} = Vars(C) and a1, . . . , an ∈ Q, such
that Q |= c σ for every c ∈ C. A set of constraints is said to be satisfiable if it
has a solution. We assume that we are given a function solve that takes a set C
of constraints in LIN Q as input and returns a solution σ of C, if C is satisfiable,
and fail otherwise. The function solve can be implemented, for instance, by
using the Fourier-Motzkin or the Khachiyan algorithms [12]. We assume that we
are also given a function project such that for every constraint c ∈ LIN Q and
for every finite set of variables X ⊆ Varrat, Q |= ∀X ((∃Y c)↔ project(c,X)),
where Y = Vars(c) −X and Vars(project(c,X))⊆X. The project function can
be implemented, for instance, by using the Fourier-Motzkin variable elimination
algorithm or the algorithm presented in [13].

A clause γ : H ← c∧G is said to be in normal form if (i) every term of type
rat occurring in G is a variable, (ii) each variable of type rat occurs at most
once in G, (iii) Varsrat(H) ∩Varsrat(G) = ∅, and (iv) γ has no constraint-local
variables. It is always possible to transform any clause γ1 into a clause γ2 in
normal form such that γ1 and γ2 have the same Q-models. (In particular, the
constraint-local variables of any given clause can be eliminated by applying the
project function.) The clause γ2 is called a normal form of γ1. Without loss of

4

generality, when presenting the folding rule and the corresponding algorithm for
its application, we will assume that the clauses are in normal form.

Given two clauses γ1 and γ2, we write γ1
∼= γ2 if there exist a normal form

H ← c1 ∧ B1 of γ1, a normal form H ← c2 ∧ B2 of γ2, and a variable renam-
ing ρ such that: (1) H = Hρ, (2) B1 =AC B2ρ, and (3) Q |= ∀ (c1 ↔ c2ρ),
where =AC denotes equality modulo the equational theory of associativity and
commutativity of conjunction. We refer to this theory as the AC∧ theory [14].

Proposition 1. (i)∼= is an equivalence relation. (ii) If γ1
∼= γ2 then, for every

Q-interpretation I, I |=γ1 iff I |=γ2. (iii) If γ2 is a normal form of γ1 then γ1
∼=γ2.

3 The Folding Rule

In this section we introduce our folding transformation rule which is a variant
of the rules considered in the literature [7,8,9,10]. In particular, by using our
variant of the folding rule we may replace a constrained goal occurring in the
body of a clause where some existential variables occur, by an atom which has
no existential variables in the folded clause.

Definition 1 (Folding Rule). Let γ: H ← c ∧ G and δ: K ← d ∧ B be
clauses in normal form without variables in common. Suppose also that there
exist a constraint e, a substitution ϑ, and a goal R such that: (1) γ ∼= H ←
e ∧ dϑ ∧Bϑ ∧R; (2) for every variable X in EVars(δ), the following conditions
hold: (2.1) Xϑ is a variable not occurring in {H, e, R}, and (2.2) Xϑ does not
occur in the term Y ϑ, for every variable Y occurring in d∧B and different from
X; (3) Vars(Kϑ) ⊆ Vars(H). By folding clause γ using clause δ we derive the
clause η : H ← e ∧Kϑ ∧R.

Condition (3) ensures that no existential variable of η occurs in Kϑ. However,
in e or R some existential variables may still occur. These variables may be
eliminated by further folding steps using clause δ again or other clauses. In
Theorem 1 below we establish the correctness of the folding rule w.r.t. the perfect
model semantics. That correctness follows immediately from [6].

A transformation sequence is a sequence P0, . . . , Pn of programs such that,
for k = 0, . . . , n−1, program Pk+1 is derived from program Pk by an application
of one of the following transformation rules: definition, unfolding, folding. For a
detailed presentation of the definition and unfolding rules we refer to [10]. An
application of the folding rule is defined as follows. For k = 0, . . . , n, by Defsk we
denote the set of clauses introduced by the definition rule during the construction
of P0, . . . , Pk. Program Pk+1 is derived from program Pk by an application of
the folding rule if Pk+1 = (Pk − {γ}) ∪ {η}, where γ is a clause in Pk, δ is a
clause in Defsk, and η is the clause derived by folding γ using δ as indicated in
Definition 1.
Theorem 1. Let P0 be a stratified program and let P0, . . . , Pn be a transforma-
tion sequence. Suppose that, for k = 0, . . . , n−1, if Pk+1 is derived from Pk by
folding clause γ using clause δ ∈ Defsk, then there exists j, with 0<j <n, such
that δ ∈ Pj and Pj+1 is derived from Pj by unfolding δ w.r.t. a positive literal in
its body. Then P0 ∪Defsn and Pn are stratified and M(P0 ∪Defsn) = M(Pn).

5

4 An Algorithm for Applying the Folding Rule

Now we will present an algorithm for determining whether or not a clause
γ : H ← c ∧ G can be folded using a clause δ : K ← d ∧ B, according to
Definition 1. The objective of our folding algorithm is to find a constraint e,
a substitution ϑ, and a goal R such that γ ∼= H ← e ∧ dϑ ∧ Bϑ ∧ R holds
(see Point (1) of Definition 1), and also Points (2) and (3) of Definition 1 hold.
Our algorithm computes e, ϑ, and R, if they exist, by applying two procedures:
(i) the goal matching procedure, called GM, which matches the goal G against
B and returns a substitution α and a goal R such that G =AC Bα ∧ R, and
(ii) the constraint matching procedure, called CM, which matches the constraint
c against dα and returns a substitution β and a new constraint e such that c
is equivalent to e ∧ dα β in the theory of constraints. The substitution ϑ to be
found is α β, that is, the composition of the substitutions α and β. The output
of the folding algorithm is either the clause η : H ← e∧Kϑ∧R, or fail if folding
is not possible. Since Definition 1 does not determine e, ϑ, and R in a unique
way, our folding algorithm is nondeterministic and, as already said, in different
runs it may compute different output clauses.

4.1 Goal Matching
Let us now present the goal matching procedure GM. This procedure uses the
notion of binding which is defined as follows: a binding is a pair of the form
e1/e2, where e1, e2 are either both goals or both terms. Thus, the notion of set
of bindings is a generalization of the notion of substitution.
Goal Matching Procedure: GM

Input: two clauses in normal form without variables in common γ : H ← c∧G
and δ : K ← d ∧B.
Output: a substitution α and a goal R such that: (1) G =AC Bα∧R; (2) for
every variable X in EVars(δ), the following conditions hold: (2.1) Xα is
a variable not occurring in {H, R}, and (2.2) Xα does not occur in the
term Y α, for every variable Y occurring in d ∧ B and different from X;
(3) Varstree(Kα) ⊆ Vars(H). If such α and R do not exist, then fail.
Consider a set Bnds of bindings initialized to the singleton {B/G}. Consider
also the following rewrite rules (i)–(x). When the left hand side of a rule is
written as Bnds1∪Bnds2 =⇒ . . . then we assume that Bnds1 ∩ Bnds2 = ∅.
(i) {(L1∧B1) / (G1∧L2∧G2)} ∪ Bnds =⇒ {L1/L2, B1/(G1∧G2)} ∪ Bnds

where: (1) L1 and L2 are both positive or both negative literals and have
the same predicate symbol with the same arity, and (2) B1, G1, and G2

are goals (possibly, the empty conjunction true);
(ii) {¬A1/¬A2} ∪ Bnds =⇒ {A1/A2} ∪ Bnds;
(iii) {a(s1, . . . , sn)/a(t1, . . . , tn)} ∪ Bnds =⇒ {s1/t1, . . . , sn/tn} ∪ Bnds;
(iv) {a(s1, . . . , sm)/b(t1, . . . , tn)}∪Bnds =⇒ fail, if a is syntactically different

from b or m 6= n;
(v) {a(s1, . . . , sn)/X} ∪ Bnds =⇒ fail, if X is a variable;
(vi) {X/s} ∪ Bnds =⇒ fail, if X is a variable and X/t ∈ Bnds for some t

syntactically different from s;

6

(vii) {X/s} ∪ Bnds =⇒ fail, if X ∈ EVars(δ) and one of the following three
conditions holds: (1) s is not a variable, or (2) s ∈ Vars(H), or (3) there
exists Y ∈ Vars(d ∧ B) different from X such that: (3.1) Y/t ∈ Bnds,
for some term t, and (3.2) s ∈ Vars(t);

(viii) {X/s, true/G2} ∪ Bnds =⇒ fail, if X ∈ EVars(δ) and s ∈ Vars(G2);
(ix) {X/s} ∪ Bnds =⇒ fail, if X ∈ Varstree(K) and Vars(s) 6⊆ Vars(H);
(x) Bnds =⇒ {X/s} ∪ Bnds, where s is an arbitrary ground term of type

tree, if X ∈ Varstree(K) − Vars(B) and there is no term t such that
X/t ∈ Bnds.

IF there exist a set of bindings α (which, by construction, is a substitution)
and a goal R such that: (c1) {B/G} =⇒∗ {true/R}∪α (where true/R 6∈ α),
(c2) no α′ exists such that α =⇒ α′, and (c3) α is different from fail (that is,
α is a maximally rewritten, non-failing set of bindings such that (c1) holds)
THEN return α and R ELSE return fail.

Rule (i) associates each literal in B with a literal in G in a nondeterministic
way. Rules (ii)–(vi) are a specialization to our case of the usual rules for match-
ing [15]. Rules (vii)–(x) ensure that any pair 〈α, R〉 computed by GM satisfies
Conditions (2) and (3) of the folding rule, or if no such pair exists, then GM
returns fail.

Example 1. Let us apply the procedure GM to the clauses γ and δ presented in
the Introduction, where the predicates p, q, r, and s are of type rat×tree×tree,
rat×tree×rat, tree, and rat×tree×tree, respectively, and the function f
is of type tree→tree. The clauses γ and δ are in normal form and have no
variables in common. The procedure GM performs the following rewritings,
where the arrow r=⇒ denotes an application of the rewrite rule r:
{q(W1, Y3,W2)/(q(Z1, f(X3), Z2) ∧ r(X2))}

i=⇒ {q(W1, Y3,W2)/q(Z1, f(X3), Z2), true/r(X2)}
iii=⇒ {W1/Z1, Y3/f(X3), W2/Z2, true/r(X2)}
x=⇒ {W1/Z1, Y3/f(X3), W2/Z2, Y2/a, true/r(X2)}

In the final set of bindings, the term a is an arbitrary constant of type tree. The
output of GM is the substitution α : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the
goal R : r(X2).

The termination of the goal matching procedure can be shown via an argu-
ment based on the multiset ordering of the size of the bindings. Indeed, each of
the rules (i)–(ix) replaces a binding by a finite number of smaller bindings, and
rule (x) can be applied at most once for each variable in the head of clause δ.

4.2 Constraint Matching
Given two clauses in normal form γ : H ← c ∧G and δ : K ← d ∧ B, if the goal
matching procedure GM returns the substitution α and the goal R, then we
can construct two clauses in normal form: H ← c∧Bα∧R and Kα ← dα∧Bα
such that G =AC Bα ∧ R. The constraint matching procedure CM takes in
input these two clauses, which, for reasons of simplicity, we now rename as
γ′ : H ← c∧B′∧R and δ′ : K ′ ← d′∧B′, respectively, and returns a constraint e

7

and a substitution β such that: (1) γ′ ∼= H ← e ∧ d′β ∧ B′ ∧ R, (2) B′β = B′,
(3) Vars(K ′β)⊆Vars(H), and (4) Vars(e)⊆Vars({H, R}). If such e and β do
not exist, then the procedure CM returns fail.

Now, let ẽ denote the constraint project(c,X), where X = Vars(c)−Vars(B′)
(see Section 2 for the definition of the project function). Lemma 1 below shows
that, for any substitution β, if there exists a constraint e satisfying Condi-
tions (1)–(4) above, then we can always take e to be the constraint ẽ. Thus,
by Lemma 1 the procedure CM should only search for a substitution β such
that Q |= ∀(c ↔ (ẽ ∧ d′β)).

Lemma 1. Let γ′ : H ← c∧B′∧R and δ′ : K ′ ← d′∧B′ be the input clauses of the
constraint matching procedure. For every substitution β, there exists a constraint
e such that: (1) γ′ ∼= H ← e ∧ d′β ∧ B′ ∧ R, (2) B′β = B′, (3) Vars(K ′β) ⊆
Vars(H), and (4) Vars(e) ⊆ Vars({H, R}) iff Q |= ∀(c ↔ (ẽ ∧ d′β)) and
Conditions (2) and (3) hold.

Now we introduce some notions and we state some properties (see Lemma 2
and Theorem 2) which will be exploited by the constraint matching procedure
CM for reducing the equivalence between c and ẽ ∧ d′β, for a suitable β, to a
set of equivalences between the atomic constraints occurring in c and ẽ ∧ d′β.

A conjunction a1∧ . . .∧am of (not necessarily distinct) atomic constraints is
said to be redundant if there exists i, with 0≤ i ≤ m, such that Q |= ∀((a1∧ . . .∧
ai−1 ∧ ai+1 ∧ . . . ∧ am) → ai). In this case we also say that ai is redundant in
a1∧ . . .∧am. Thus, the empty conjunction true is non-redundant and an atomic
constraint a is redundant iff Q |= ∀(a). Given a redundant constraint c, we can
always derive a non-redundant constraint c′ which is equivalent to c, that is,
Q |= ∀(c ↔ c′), by repeatedly eliminating from the constraint at hand an atomic
constraint which is redundant in that constraint.

Without loss of generality we can assume that any given constraint c is of
the form p1 ρ1 0∧ . . .∧pm ρm 0, where m≥0 and ρ1, . . . , ρm ∈ {≥, >}. We define
the interior of c, denoted interior(c), to be the constraint p1 >0∧ . . .∧pm >0. A
constraint c is said to be admissible if both c and interior(c) are satisfiable and
non-redundant. For instance, the constraint c1 : X−Y ≥0 ∧ Y ≥0 is admissible,
while the constraint c2 : X−Y ≥0 ∧ Y ≥0 ∧X >0 is not admissible (indeed, c2

is non-redundant and interior(c2) : X−Y >0∧ Y >0∧X >0 is redundant). The
following Lemma 2 characterizes the equivalence of two constraints when one of
them is admissible.

Lemma 2. Let us consider an admissible constraint a of the form a1 ∧ . . .∧ am

and a constraint b of the form b1∧. . .∧bn, where a1, . . . , am, b1, . . . , bn are atomic
constraints (in particular, they are not equalities). We have that Q |= ∀ (a ↔ b)
holds iff there exists an injection µ : {1, . . . , m} → {1, . . . , n} such that for
i = 1, . . . , m, Q |= ∀ (ai ↔ bµ(i)) and for j = 1, . . . , n, if j 6∈ {µ(i) | 1≤ i≤m},
then Q |= ∀ (a → bj).

In order to see that admissibility is a needed hypothesis for Lemma 2, let us
consider the non-admissible constraint c3 : X−Y ≥ 0 ∧ Y ≥ 0 ∧ X +Y > 0. We

8

have that Q |= ∀(c2 ↔ c3) and yet there is no injection which has the properties
stated in Lemma 2.

Lemma 2 will be used to show that if there exists a substitution β such that
Q |= ∀(c ↔ (ẽ ∧ d′β)), where c is an admissible constraint and ẽ is defined
as in Lemma 1, then CM computes such a substitution β. Indeed, given the
constraint c, of the form a1 ∧ . . . ∧ am, and the constraint ẽ ∧ d′, of the form
b1 ∧ . . . ∧ bn, CM computes: (1) an injection µ from {1, . . . , m} to {1, . . . , n},
and (2) a substitution β such that: (2.i) for i = 1, . . . , m, Q |= ∀(ai ↔ bµ(i)β),
and (2.ii) for j = 1, . . . , n, if j 6∈ {µ(i) | 1≤ i≤m}, then Q |= ∀(c → bjβ).

In order to compute β satisfying the property of Point (2.i), we make use of
the following Property P1: given the satisfiable, non-redundant constraints p>0
and q > 0, we have that Q |= ∀(p > 0 ↔ q > 0) holds iff there exists a rational
number k >0 such that Q |= ∀(kp − q = 0) holds. Property P1 holds also if we
replace p>0 and q>0 by p≥0 and q≥0, respectively.

Finally, in order to compute β satisfying the property of Point (2.ii), we make
use of the following Theorem 2 which is a generalization of the above Property
P1 and it is an extension of Farkas’ Lemma to the case of systems of weak and
strict inequalities [12].

Theorem 2. Suppose that p1 ρ1 0 , . . . , pm ρm 0, pm+1 ρm+1 0 are atomic con-
straints such that, for i = 1, . . . ,m + 1, ρi ∈ {≥, >} and Q |= ∃(p1 ρ1 0 ∧ . . . ∧
pm ρm 0). Then Q |= ∀(p1 ρ1 0 ∧ . . . ∧ pm ρm 0 → pm+1 ρm+1 0) iff there exist
k1≥ 0, . . . , km+1≥0 such that: (i) Q |= ∀ (k1p1 + · · · + kmpm + km+1 = pm+1),
and (ii) if ρm+1 is > then (

∑
i∈I ki)>0, where I ={i | 1≤ i≤m+1, ρi is >}.

As we will see below, the constraint matching procedure CM may generate
bilinear polynomials (see rules (i)–(iii)), that is, non-linear polynomials of a
particular form, which we now define. Let p be a polynomial and 〈P1, P2〉 be
a partition of a (proper or not) superset of Vars(p). The polynomial p is said
to be bilinear in the partition 〈P1, P2〉 if the monomials of p are of the form:
either (i) k XY , where k is a rational number, X ∈P1, and Y ∈P2, or (ii) k X,
where k is a rational number and X is a variable, or (iii) k, where k is a rational
number. Let us consider a polynomial p which is bilinear in the partition 〈P1, P2〉
where P2 = {Y1, . . . , Ym}. The normal form of p, denoted nf (p), w.r.t. a given
ordering Y1, . . . , Ym of the variables in P2, is a bilinear polynomial which is
derived by: (i) computing the bilinear polynomial p1Y1 + · · · + pmYm + pm+1

such that Q |= ∀ (p1Y1 + · · · + pmYm + pm+1 = p), and (ii) erasing from that
bilinear polynomial every summand piYi such that Q |= ∀ (pi = 0).

Constraint Matching Procedure: CM
Input: two clauses in normal form γ′ : H ← c∧B′ ∧R and δ′ : K ′ ← d′ ∧B′.
Output: a constraint e and a substitution β such that: (1) γ′ ∼= H ← e ∧
d′β ∧ B′ ∧ R, (2) B′β = B′, (3) Vars(K ′β) ⊆ Vars(H), and (4) Vars(e) ⊆
Vars({H, R}). If such e and β do not exist, then fail.

IF c is unsatisfiable THEN return an arbitrary ground, unsatisfiable con-
straint e and a substitution β of the form {U1/a1, . . . , Us/as}, where {U1, . . . ,

9

Us} = Varsrat(K ′) and a1, . . . , as are arbitrary rational numbers ELSE, if c
is satisfiable, we proceed as follows.
Let X be the set Vars(c) − Vars(B′), Y be the set Vars(d′) − Vars(B′),
and Z be the set Varsrat(B′). Let e be the constraint project(c,X). Without
loss of generality, we may assume that: (i) c is a constraint of the form
p1 ρ1 0 ∧ . . . ∧ pm ρm 0, where for i = 1, . . . , m, pi is a linear polynomial and
ρi ∈ {≥, >}, and (ii) e ∧ d′ is a constraint of the form q1 π1 0 ∧ . . . ∧ qn πn 0,
where for j = 1, . . . , n, qi is a linear polynomial and πi ∈ {≥, >}.
Let us consider the following rewrite rules (i)–(v) which are all of the form:

〈f1 ↔ g1, S1, σ1〉 =⇒ 〈f2 ↔ g2, S2, σ2〉
where: (1) f1, g1, f2, and g2 are constraints, (2) S1 and S2 are sets of con-
straints, and (3) σ1 and σ2 are substitutions. In the rewrite rules (i)–(v)
below, whenever S1 is written as A ∪B, we assume that A ∩B = ∅.
(i) 〈p ρ 0 ∧f ↔ g1 ∧ q ρ 0 ∧ g2, S, σ〉 =⇒

〈f ↔ g1∧g2, {nf (V p−q) = 0, V >0}∪ S, σ〉
where V is a new variable and ρ ∈ {≥, >};

(ii) 〈true ↔ q≥0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0} ∪ S, σ〉
where V1, . . . , Vm+1 are new variables;

(iii) 〈true ↔ q>0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0, (
∑

i∈I Vi)>0} ∪ S, σ〉
where V1, . . . , Vm+1 are new variables and I ={i | 1≤ i≤m+1, ρi is >};

(iv) 〈f ↔ g, {pU+q = 0}∪S, σ〉 =⇒ 〈f ↔ g, {p = 0, q = 0}∪S, σ〉
if U ∈ X ∪ Z;

(v) 〈f ↔ g, {aU+q = 0}∪S, σ〉 =⇒
〈f ↔ (g{U/− q

a}), {nf (p{U/− q
a})ρ 0 | p ρ 0 ∈ S}, σ{U/− q

a}〉
if U ∈Y , Vars(q) ∩Vars(R) = ∅, and a ∈ (Q− {0});

IF there exist a set C of constraints and a substitution σY such that:
(c1) 〈c ↔ e ∧ d′, ∅, ∅〉 =⇒∗ 〈true ↔ true, C, σY 〉, (c2) there is no triple T
such that 〈true ↔ true, C, σY 〉 =⇒ T , (c3) for every constraint f ∈C, we
have that Vars(f)⊆W , where W is the set of the new variables introduced
during the rewriting steps from 〈c ↔ e ∧ d′, ∅, ∅〉 to 〈true ↔ true, C, σY 〉,
and (c4) C is satisfiable and solve(C) = σW ,
THEN construct a substitution σG of the form {U1/a1, . . . , Us/as}, where
{U1, . . . , Us}=Varsrat(K ′σY σW)−Vars(H) and a1,. . . , as are arbitrary ratio-
nal numbers, and return the constraint e and the substitution β = σY σW σG

ELSE return fail.

Note that in order to apply rules (iv) and (v), p U and a U , respectively, should be
the leftmost monomials. The procedure CM is nondeterministic (see rule (i)). By
induction on the number of rule applications, we can show that the polynomials
occurring in the second components of the triples are all bilinear in the partition

10

〈W,X∪Y ∪Z〉, where W is the set of the new variables introduced during the
application of the rewrite rules. The normal forms of the bilinear polynomials
which occur in the rewrite rules are all computed w.r.t. the fixed variable ordering
Z1, . . . , Zh, Y1, . . . , Yk, X1, . . . , Xl, where {Z1, . . . , Zh} = Z, {Y1, . . . , Yk} = Y ,
and {X1, . . . , Xl} = X.

The termination of the procedure CM is a consequence of the following facts:
(1) each application of rules (i), (ii), and (iii) reduces the number of atomic con-
straints occurring in the first component of the triple 〈f ↔ g, S, σ〉 at hand;
(2) each application of rule (iv) does not modify the first component of the triple
at hand, does not introduce any new variables, and replaces an equation occur-
ring in the second component of the triple at hand by two smaller equations;
(3) each application of rule (v) does not modify the number of atomic constraints
in the first component of the triple at hand and eliminates all occurrences of a
variable. Thus, the termination of CM can be proved by a lexicographic combi-
nation of two linear orderings and a multiset ordering.

Example 2. Let us consider again the clauses γ and δ of the Introduction and
let α be the substitution computed by applying the procedure GM to γ and δ
as shown in Example 1. Let us also consider the clauses γ′ and δ′, where γ′ is γ
and δ′ is δα, that is,
δ′: s(Y1, a, f(X3)) ← Z1 <0 ∧ Y1−3≥2Z1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2)
Now we apply the procedure CM to clauses γ′ and δ′. The constraint X1 <1 ∧
X1≥Z1+1 ∧ Z2 >0 occurring in γ′ is satisfiable. The procedure CM starts off
by computing the constraint e as follows:

e = project(X1 <1 ∧X1≥Z1+1 ∧ Z2 >0, {X1}) = X1 <1
Now CM performs the following rewritings, where: (i) all polynomials are bi-
linear in 〈{V1, . . . , V7}, {X1, Y1, Z1, Z2}〉, (ii) their normal forms are computed
w.r.t. the variable ordering Z1, Z2, Y1, X1, and (iii) r=⇒k denotes k applications
of rule r. (We have underlined the constraints that are rewritten by an appli-
cation of a rule. Note also that the atomic constraints occurring in the initial
triple are the ones in γ′ and δ′, rewritten into the form p > 0 or p ≥ 0.)

〈(1−X1 >0 ∧X1−Z1−1≥0 ∧ Z2 >0) ↔
(1−X1 >0 ∧ −Z1 >0 ∧ Y1−3−2Z1 ≥0 ∧ Z2 >0), ∅, ∅〉
i=⇒ 〈(X1−Z1−1≥0 ∧ Z2 >0) ↔ (−Z1 >0 ∧ Y1−3−2Z1≥0 ∧ Z2 >0),

{(1−V1)X1+V1−1=0, V1 >0}, ∅〉
i=⇒ 〈Z2 >0 ↔ (−Z1 >0 ∧ Z2 >0),

{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0}, ∅〉
i=⇒ 〈true ↔ −Z1 >0,

{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0,
(V3−1)Z2 =0, V3 >0}, ∅〉

iii=⇒ 〈true ↔ true,
{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0,

(V3−1)Z2 =0, V3 >0, (1−V5)Z1+V6Z2+(V5−V4)X1+V4−V5+V7 =0,

V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, ∅〉

11

iv=⇒6〈true ↔ true,
{1−V1 =0, V1−1=0, V1 >0, 2−V2 =0,−Y1+V2X1−V2+3=0, V2 >0,

V3−1=0, V3 >0, 1−V5 =0, V6 =0, V5−V4 =0, V4−V5+V7 =0,
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, ∅〉

v=⇒ 〈true ↔ true,
{1−V1 =0, V1−1=0, V1 >0, 2−V2 =0, V2 >0,

V3−1=0, V3 >0, 1−V5 =0, V6 =0, V5−V4 =0, V7−V5+V4 =0,
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, {Y1/V2X1−V2+3}〉

Let C be the second component of the final triple of the above sequence of rewrit-
ings. We have that C is satisfiable and has a unique solution given by the follow-
ing substitution: σW =solve(C)={V1/1, V2/2, V3/1, V4/1, V5/1, V6/0, V7/0}. The
substitution σY computed in the third component of the final triple of the above
sequence of rewritings is {Y1/V2X1−V2+3}. Since Varsrat(s(Y1, a, f(X3))σY σW)−
Vars(H)= {X1, X3}−{X1, X2, X3}=∅, we have that σG is the identity substi-
tution. Thus, the output of the procedure CM is the constraint e = X1 <1 and
the substitution β = σY σW σG = {Y1/2X1+1} ∪ σW .

4.3 The Folding Algorithm

Now we are ready to present our folding algorithm.

Folding Algorithm: FA
Input: two clauses in normal form without variables in common γ : H ← c∧G
and δ : K ← d ∧B.
Output: the clause η : H ← e ∧ Kϑ ∧ R, if it is possible to fold γ using δ
according to Definition 1, and fail, otherwise.
IF there exist a substitution α and a goal R which are the output of an
execution of the procedure GM when given in input the clauses γ and δ
AND there exist a constraint e and a substitution β which are the output of
an execution of the procedure CM when given in input the clauses γ′ : H ←
c ∧Bα ∧R and δ′ : Kα ← dα ∧Bα
THEN return the clause η : H ← e ∧Kαβ ∧R ELSE return fail.

The following theorem states that the folding algorithm FA terminates (Point 1),
it is sound (Point 2), and, if the constraint c is admissible, then FA is complete
(Point 3). The proof of this result can be found in [16].

Theorem 3 (Termination, Soundness, and Completeness of FA). Let
the input of the algorithm FA be two clauses γ and δ in normal form without
variables in common. Then: (1) FA terminates; (2) if FA returns a clause η,
then η can be derived by folding γ using δ according to Definition 1; (3) if it is
possible to fold γ using δ according to Definition 1 and the constraint occurring
in γ is either unsatisfiable or admissible, then FA does not return fail.

Example 3. Let us consider clause γ: p(X1,X2,X3) ← X1 < 1 ∧ X1 ≥ Z1+1
∧ Z2 > 0 ∧ q(Z1, f(X3), Z2) ∧ r(X2) and clause δ: s(Y1, Y2, Y3) ← W1 < 0 ∧
Y1−3≥2W1 ∧W2 >0 ∧ q(W1, Y3, W2) of the Introduction. Let the substitution
α : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the goal R : r(X2) be the result of

12

applying the procedure GM to γ and δ as shown in Example 1, and let the con-
straint e : X1 <1 and the substitution β : {Y1/2X1+1}∪σW be the result of apply-
ing the procedure CM to γ and δα as shown in Example 2. Then, the output of
the folding algorithm FA is the clause η : p(X1, X2, X3) ← e∧s(Y1, Y2, Y3)αβ∧R,
that is: η : p(X1, X2, X3) ← X1 <1 ∧ s(2X1+1, a, f(X3)) ∧ r(X2).

5 Complexity of the Algorithm and Experimental Results

Let us first analyze the time complexity of our folding algorithm FA by as-
suming that: (i) each rule application during the goal matching procedure GM
and the constraint matching procedure CM takes constant time, and (ii) each
computation of the functions nf, solve, and project takes constant time. In these
hypotheses our FA algorithm is in NP (w.r.t. the number of occurrences of sym-
bols in the input clauses). To show this result, it is sufficient to show that both
the goal matching procedure GM and the constraint matching procedure CM
are in NP.

We have that GM is in NP w.r.t. the number of occurrences of symbols in
the two goals B and G appearing in the input clauses. Indeed, rule (i) of GM
chooses a mapping from the set of the occurrences of the literals of B to the set
of occurrences of the literals of G and each application of any other rule of GM
consumes at least one symbol of the input clauses.

We have that also CM is in NP w.r.t. the number N of occurrences of
symbols in the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉. Indeed, rule (i) of CM chooses
a mapping from the set of occurrences of the atomic constraints in c to the set
of occurrences of the atomic constraints in e ∧ d′. Moreover, the length of any
sequence of applications of the other rules of CM is polynomial in N as we
now show. First, we may assume that the applications of rules (iv) and (v) are
done after the applications of rules (i), (ii), and (iii). Since each application of
rules (i), (ii), and (iii) reduces the number of constraints occurring in the first
component of the triple at hand, we may have at most N applications of these
three rules. Moreover, each application of rules (i), (ii), and (iii) introduces at
most m+1 new variables, with m+1 ≤ N . Hence, at most N2 new variables are
introduced. Rule (iv) can be applied at most M times, where M is the number
of variable occurrences in the second component of the triple at hand. Finally,
each application of rule (v) eliminates all occurrences of one variable in Y , which
is a subset of the variables occurring in the input triple and, therefore, this rule
can be applied at most N times. Moreover, for each application of rule (v),
the cardinality of the second component of the triple at hand does not change
and the number of variable occurrences in each constraint in that component
is bounded by the cardinality of X ∪ Y ∪ Z (which is at most N). Thus, M is
bounded by a polynomial of the value of N .

A more detailed time complexity analysis of our folding algorithm FA where
we do not assume that the functions nf, solve, and project are computed in
constant time, is as follows. (i) nf takes polynomial time in the size of its argu-
ment, (ii) solve takes polynomial time in the number of variables of its argument
by using Khachiyan’s method [12], and (iii) project takes O(2v) time, where

13

v = |Vars(c) ∩ Vars(B′)| (see [13] for the complexity of variable elimination
from linear constraints). Since the project function is applied only once at the
beginning of the procedure CM, we get that the computation of our FA algo-
rithm requires nondeterministic polynomial time plus O(2v) time.

Note that since matching modulo the equational theory AC∧ is NP-complete
[14,17], one cannot hope for a folding algorithm whose asymptotic time com-
plexity is significantly better than our FA algorithm.

In the following Table 1 we report some experimental results for our algorithm
FA, implemented in SICStus Prolog 3.12, on a Pentium IV 3GHz. We have
considered the example D0 of the Introduction, the four examples D1–D4 for
which folding can be done in one way only (Number of Foldings=1), and the four
examples N1–N4 for which folding can be done in more than one way (Number
of Foldings>1).

The Number of Variables row indicates the number of variables in clause γ (to
be folded) plus the number of variables in clause δ (used for folding). The Time
row indicates the seconds required for finding the folded clause (or the first folded
clause, in examples N1–N4). The Total-Time row indicates the seconds required
for finding all folded clauses. (Note that even when there exists one folded clause
only, Total-Time is greater than Time because, after the folded clause has been
found, FA checks that no other folded clauses can be computed.)

In example D1 clause γ is p(A) ← A< 1 ∧ A≥B+1 ∧ q(B) and clause δ is
r(C) ← D<0∧C−3≥2D∧ q(D). In example N1 clause γ is p ← A>1∧3>A∧
B > 1∧ 3 > B ∧ q(A) ∧ q(B) and clause δ is r ← C > 1 ∧ 3 > C ∧ D > 1 ∧
3>D∧ q(C)∧ q(D). Similar clauses (with more variables) have been used in the
other examples.

Our algorithm FA performs reasonably well in practice. However, when the
number of variables (and, in particular, the number of variables are of type rat)
increases, the performance rapidly deteriorates.

Example D0 D1 D2 D3 D4 N1 N2 N3 N4

Number of Foldings 1 1 1 1 1 2 4 4 16
Number of Variables 10 4 8 12 16 4 8 12 16
Time (in seconds) 0.01 0.01 0.08 3.03 306 0.02 0.08 0.23 1.09
Total-Time (in seconds) 0.02 0.02 0.14 4.89 431 0.03 49 1016 11025

Table 1. Execution times of the folding algorithm FA for various examples.

6 Related Work and Conclusions

The elimination of existential variables from logic programs and constraint logic
programs is a program transformation technique which has been proposed for
improving program performance [2] and for proving program properties [3]. This
technique makes use of the definition, unfolding, and folding rules [5,6,7,8,9,10].
In this paper we have considered constraint logic programs, where the constraints
are linear inequations over the rational (or real) numbers, and we have focused

14

on the problem of automating the application of the folding rule. Indeed, the ap-
plicability conditions of the many folding rules for transforming constraint logic
programs which have been proposed in the literature [3,7,8,9,10], are specified in
a declarative way and no algorithm is given to determine whether or not, given
a clause γ to be folded by using a clause δ, one can actually perform that folding
step. The problem of checking the applicability conditions of the folding rule is
not trivial (see, for instance, the example presented in the Introduction).

In this paper we have considered a folding rule which is a variant of the
rules proposed in the literature, and we have given an algorithm, called FA, for
checking its applicability conditions. To the best of our knowledge, ours is the
first algorithmic presentation of the folding rule. The applicability conditions of
our rule consist of the usual conditions (see, for instance, [10]) together with the
extra condition that, after folding, the existential variables should be eliminated.
Thus, our algorithm FA is an important step forward for the full automation
of the above mentioned program transformation techniques [2,3] which improve
program efficiency or prove program properties by eliminating existential vari-
ables.

We have proved the termination and the soundness of our algorithm FA. We
have also proved that if the constraint appearing in the clause γ to be folded
is admissible, then FA is complete, that is, it does not return fail whenever
folding is possible. The class of admissible constraints is quite large. We have
also implemented the folding algorithm and our experimental results show that
it performs reasonably well in practice.

Our algorithm FA consists of two procedures: (i) the goal matching proce-
dure, and (ii) the constraint matching procedure. The goal matching procedure
solves a problem similar to the problem of matching two terms modulo an asso-
ciative, commutative (AC, for short) equational theory [18,19]. However, in our
case we have the extra conditions that: (i.1) the matching substitution should be
consistent with the types (either rational numbers or trees), and (i.2) after fold-
ing, the existential variables should be eliminated. Thus, we could not directly
use the AC-matching algorithms available in the literature.

The constraint matching procedure solves a generalized form of the matching
problem, modulo the equational theory Q of linear inequations over the rational
numbers. That problem can be seen as a restricted unification problem [20].
In [20] it is described how to obtain, under certain conditions, an algorithm
for solving a restricted unification problem from an algorithm that solves the
corresponding unrestricted unification problem. To the best of our knowledge,
for the theory Q of constraints a solution is provided in the literature neither
for the restricted unification problem nor for the unrestricted one. Moreover,
one cannot apply the so called combination methods either [21]. These methods
consist in constructing a matching algorithm for a given theory which is the
combination of simpler theories, starting from the matching algorithms for those
simpler theories. Unfortunately, as we said, we cannot use these combination
methods for the theory Q because some applicability conditions are not satisfied
and, in particular, Q is neither collapse-free nor regular [21].

15

In the future we plan to adapt our folding algorithm FA to other constraint
domains such as the linear inequations over the integers. We will also perform a
more extensive experimentation of our folding algorithm using the MAP program
transformation system [22].

Acknowledgements

We thank the anonymous referees for helpful suggestions. We also thank John
Gallagher for comments on a draft of this paper.

References

1. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic
Programming 19/20, 503–581 (1994)

2. Proietti, M., Pettorossi, A.: Unfolding-definition-folding, in this order, for avoiding
unnecessary variables in logic programs. Theo. Comp. Sci. 142(1), 89–124 (1995)

3. Pettorossi, A., Proietti, M., Senni, V.: Proving properties of constraint logic pro-
grams by eliminating existential variables. In Etalle, S., Truszczynski, M. (eds.)
ICLP 2006. LNCS, vol. 4079, pp. 179–195. Springer (2006)

4. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. Journal of the ACM 24(1), 44–67 (1977)

5. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Tärnlund,
S.Å.(ed.) Proc.ICLP ’84, pp.127–138. Uppsala University, Uppsala, Sweden (1984)

6. H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer
Science, 86:107–139, 1991.

7. Maher, M.J.: A transformation system for deductive database modules with perfect
model semantics. Theoretical Computer Science 110, 377–403 (1993)

8. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theoretical Computer
Science 166, 101–146 (1996)

9. Bensaou, N., Guessarian, I.: Transforming constraint logic programs. Theoretical
Computer Science 206, 81–125 (1998)

10. Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation rules for locally strat-
ified constraint logic programs. In Lau, K.K., Bruynooghe, M. (eds.) Program De-
velopment in Computational Logic. LNCS, vol. 3049, pp. 292–340. Springer (2004)

11. Lloyd, J.W.: Foundations of Logic Programming. Second Edition. Springer (1987)
12. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons (1986)
13. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.

5(1-2), 3–27 (1988)
14. Baader, F., Snyder, W.: Unification theory. In Robinson, A., Voronkov, A. (eds.)

Handbook of Automated Reasoning. Vol. I, pp. 445–532. Elsevier Science (2001)
15. Terese: Term Rewriting Systems. Cambridge University Press (2003)
16. Senni, V.: Transformation Techniques for Constraint Logic Programs with Appli-

cation to Protocol Verification. PhD thesis, University of Rome “Tor Vergata”,
Rome, Italy (2008)

17. Benanav, D., Kapur, D., Narendran, P.: Complexity of matching problems. Journal
of Symbolic Computation 3(1-2), 203–216 (1987)

18. Livesey, M., Siekmann, J.: Unification of A+C Terms (Bags) and A+C+I Terms
(Sets). TR 3/76, Institut für Informatik I, Universität Karlsruhe (1976)

19. Stickel, M.E.: A unification algorithm for associative-commutative functions. J.
ACM 28(3), 423–434 (1981)

16

20. Bürckert, H.J.: Some relationships between unification, restricted unification, and
matching. Proc. CADE ’86. LNCS, vol. 230, pp. 514–524. Springer (1986)

21. Ringeissen, C.: Matching in a class of combined non-disjoint theories. In Baader,
F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 212–227. Springer (2003)

22. The MAP transformation system. http://www.iasi.cnr.it/∼proietti/system.html

17

