
Compiling Fuzzy Answer Set Programs to Fuzzy
Propositional Theories

Jeroen Janssen1?, Stijn Heymans2??, Dirk Vermeir1, and Martine De Cock2

1 Dept. of Computer Science, Vrije Universiteit Brussel
{jeroen.janssen,dvermeir}@vub.ac.be

2 Dept. of Applied Mathematics and Computer Science, Universiteit Gent
{stijn.heymans,martine.decock}@ugent.be

Abstract. We show how a fuzzy answer set program can be compiled
to an equivalent fuzzy propositional theory whose models correspond to
the answer sets of the program. This creates a basis for constructing
fuzzy answer set solvers, such as solvers based on fuzzy SAT-solvers or
on linear programming.

Keywords: answer set programming, fuzzy logic, Clark’s completion, fuzzy
ASSAT.

1 Introduction

Fuzzy answer set programming (FASP, see e.g. [1,2,3]) is a form of many-valued
logic programming (see e.g. [4,5,6]) that extends answer set programming (ASP)
to handle vague predicates, partial satisfaction of rules, and, in the case of [3],
the notion of quality of an answer set, i.e. a solution may be an answer set to a
certain degree. This makes it possible to provide approximate answers, e.g. for
problems that do not have a perfect solution. For many application areas, this
is a desirable feature.

As an example, consider the problem of arranging a group of people such
that friends are seated close to each other. Clearly, the input predicate friend
is vague, with friend(a, b) indicating the degree of friendship between a and b,
e.g. on a scale from 0 to 1. Likewise, the second input predicate, near , is also
vague, with near(s, z) representing the proximity between the seats s and z.

The following (ungrounded)3 FASP program Pintro defines (and solves) the
problem where “←” and “,” are interpreted as the indicated fuzzy implicator and
t-norm respectively, and 0 and 1 stand for the minimal (“false”) and maximal

? Funded by Research Foundation–Flanders
?? Funded by Research Foundation–Flanders
3 Grounding is performed as usual, except that for input predicates, the actual value

of the literal is substituted, e.g. near(s, z) might be replaced by .7.

(“true”) truth value, see Section 2.

(choice) sit(P ,S)← m,fm 1
(c1) 0 ← m,fm sit(P ,S), sit(P ′,S),P 6= P ′

(c2) 0 ← m,fm sit(P ,S), sit(P ,S ′),S 6= S ′

(crisp) 0 ← m,fm sit(P ,S),not∼s sit(P ,S)
(u) unhappy(P)← m,fm sit(P ,S), sit(P ′,S ′), friend(P ,P ′),not∼s near(S ,S ′)
(q) 0 ← l,fl unhappy(P)

(sit) seated(P)← m,fm sit(P ,S)
(all) 0 ← m,fm not seated(P)

The following aggregator specifies the quality of the solution4 as a monotonic
function on the degrees of satisfaction of the rules:

APintro
= ((c1 fm c2 f

m crisp fm sit fm all fm u) ≥ 1)fm q

The (choice) rules generate a seating arrangement which is completely ar-
bitrary, since the degree of satisfaction of the (choice) rules does not influence
APintro

. Thus, an instantiation

(choice〈p, s〉) sit(p, s)← m,fm 1

of (choice) with p a person and s a seat, can be used to motivate any literal
sit(p, s)l with l an arbitrary truth value5, hence the name for these rules. Indeed,
having sit(p, s)l with l ∈ [0..1[implies that (choice〈p, s〉) is only satisfied to
degree l, but this has no impact on the value of APintro

, which is independent of
the degrees of satisfaction of the (choice) rule instantiations.

However, the constraints (c1), (c2), (crisp) and (all), whichAPintro
forces to be

fully satisfied, ensure that only arrangements where each person fully occupies
exactly one seat can appear in an answer set. Why particular operators are
being used for specific rules is explained in Section 3. The overall quality of the
solution is represented by the degree of satisfaction of the (q) constraint which
itself depends on the vague output predicate unhappy defined by the (u) rules.
Thus, friends that sit far apart will weaken the satisfaction of a (q) rule and
hence give rise to an answer set with a lower aggregated value.

As an example, consider a case where there are three available seats s1, s2,
and z, only two of which are relatively near to each other, namely near(s1, s2).8,
and three people connected by friendship with friend(a, b).8 and friend(a, c).5.
Obviously, there exists no perfect arrangement that puts a close to both of her
friends. However, an arrangement such as

I1 = { sit(a, s1)1, sit(b, s2)1, sit(c, z)1, unhappy(a).5, . . . } (1)

4 In the grounded version, each ungrounded rule (r) in APintro is replaced by
d
{ri|ri ∈

r} where r represents the set of grounded instances of the rule.
5 We use lu to denote that a literal l holds to degree u. The default value for any atom

is 0.

is still better than e.g. the arrangement

I2 = { sit(a, s1)1, sit(b, z)1, sit(c, s2)1, unhappy(a).8, . . . } (2)

In accordance with this intuition, I1 yields a .5-answer set of the FASP program
Pintro , while I2 corresponds to a .2-answer set only, as we explain in Section 3.

In this paper, we make an important contribution towards the implementa-
tion of a fuzzy answer set solver. In particular, we show how FASP programs
(in the sense of [3], but this can be readily adapted to other approaches such
as e.g. [1,2] as these can be translated to the FASP framework used in this
paper) can be implemented by translating them to an equivalent formula in a
fuzzy propositional logic, such that the answer sets of the program correspond
to models of the formula. The latter can be computed using a fuzzy satisfiabil-
ity (FSAT) solver or, subject to restrictions on the choice of connectives used
in the program, by translating the formula, e.g. using tableau methods such as
proposed in [7,8,9], to a linear programming problem that can itself be solved
using standard tools.

The remainder of the paper is organized as follows. Section 2 contains pre-
liminaries, while Section 3 introduces the fuzzy answer set programming [3]
formalism being used. A fuzzy propositional logic framework is presented in Sec-
tion 4. In Section 5, we extend to FASP programs the well-known translation
of regular logic programs to a propositional theory called “Clark’s completion”
[10]. This translation forms the basis of many algorithms for finding answer sets
such as those based on linear programming [11] or those using SAT-solvers [12].
We show that, under certain conditions, the models of our fuzzy completion and
the fuzzy answer sets of a program coincide.

However, as in the boolean case, not every model of the fuzzy completion
is an answer set. In Section 6, we remedy the situation by adding “loop formu-
las” to the completion, thus extending a similar approach for traditional answer
set programs from [12]. We also show that the procedure proposed by [12] to
iteratively compute such loop formulas “on demand” can be extended to fuzzy
answer set programs. Finally, section 7 presents conclusions and directions for
further research.

Due to space restrictions, all proofs have been omitted. They can be obtained
from the full paper at
http://tinf2.vub.ac.be/~jeroen/papers/ICLP08/ICLP08-full.pdf

2 Preliminaries

The traditional logical operations of negation, conjunction, disjunction, and
implication are generalised to logical operators acting on [0, 1] in the usual
way (see e.g. [13]). A negator is any anti-monotone [0, 1] → [0, 1] mapping
∼ satisfying ∼ 0 = 1 and ∼ 1 = 0. A negator ∼ is called involutive iff
∀x ∈ [0, 1] · ∼∼ x = x. A triangular norm, t-norm for short, is any commutative
and associative [0, 1]2 → [0, 1] (infix) operator f satisfying ∀x ∈ [0, 1] ·1f x = x.

Moreover we require f to be increasing in both of its arguments, i.e. 6 for
x1, x2 ∈ [0, 1], x1 ≤ x2 implies x1f y ≤ x2f y. Intuitively, a t-norm corresponds
to conjunction. In this paper, we restrict ourselves to continuous t-norms. As the
most often used t-norms are continuous, this is not a burdensome restriction.

An implicator is any [0, 1]2 → [0, 1] (infix) operator satisfying 0 0 =
1, and ∀x ∈ [0, 1] · 1 x = x. Moreover must be decreasing in its first, and
increasing in its second argument. Every t-norm f induces a residual implicator
defined by x y = sup{λ ∈ [0, 1] | xfλ ≤ y }. When the partial mappings of a
t-norm f are supmorphisms7, then f and its residual implicator satisfy the
residual property, i.e. ∀x, y, z ∈ [0, 1] · xf y ≤ z ≡ x ≤ y z. Throughout this
paper we only consider such residual pairs.

Well-known fuzzy logical operators on [0, 1] include the minimum t-norm
xfmy = min(x, y), its residual implicator (also known as the “Gödel implicator”)
x m y = 1 if x ≤ y, and x m y = y otherwise, the Lukasiewicz t-norm
xfl y = max(x+y−1, 0), and its residual implicator x l y = min(1−x+y, 1).
For negation, often the standard negator ∼s x = 1− x is used.

Fuzzy equivalence is denoted as ≈ and defined as a ≈ b = (a b)f (b a),
where f is a t-norm and its residual implicator. If we want to denote the use of
a specific t-norm together with its residual implicator, we do so by superscripting
the ≈-symbol as in ≈m= (a m b)fm (b m a).

An fuzzy set A over some (ordinary) set X is an X → [0, 1] mapping. For
x in X, A(x) is called the membership degree of x in A. We also use F(X) to
denote the set of all fuzzy sets over X. The support of a fuzzy set A is defined
by supp(A) = {x | A(x) > 0 }. Fuzzy set inclusion is also defined as usual by
A ⊆ B, iff ∀x ∈ X · A(x) ≤ B(x). Fuzzy set intersection (union) is defined by
(A ∩ B)(x) = A(x) u B(x) ((A ∪ B)(x) = A(x) t B(x)). This is extended to
sets of fuzzy sets in the usual way, i.e.

⋂
{A1, . . . , An } = A1 ∩ . . . ∩ An and⋃

{A1, . . . , An } = A1 ∪ . . .∪An. Lastly the fuzzy set difference we will be using
in this paper is (A \B)(x) = |A(x)−B(x)|.

3 Fuzzy Answer Set Programming

Fuzzy answer set programming [3] is an extension of regular answer set program-
ming (see e.g. [14]), a declarative formalism based on the stable model semantics
for logic programming [15].

Definition 1 (FASP program). . A literal8 is an atom a or a constant from
[0, 1]. An extended literal is either an atom or of the form not∼a, with a an
atom and ∼ a negator, representing negation as failure (naf). A rule r is of the
form

a← ,f b1, . . . , bn,not∼1c1, . . . ,not∼mcm
6 Note that the monotonicity of the second component immediately follows from that

of the first component due to the commutativity.
7 The partial mappings of a t-norm f are called supmorphisms when for an arbitrary

index set J it holds that sup{xi f y|i ∈ J } = sup{xi|i ∈ J }f y.
8 As usual, we will assume that programs have already been grounded.

where n ≥ 0, m ≥ 0 and a, { bi | 1 ≤ i ≤ n }, and { cj | 1 ≤ j ≤ m } are (sets of)
literals; ∼1, . . . ,∼m are negators and and f are resp. a residual implicator
and a t-norm. The literal a is called the head, denoted rh of the rule r, while
{ b1 . . . , bn,not c1, . . . ,not cm } is called the body rb of r. We use Lit(rb) to
denote the set of regular literals { b1, . . . , bn } from rb. A constraint is a rule r
where rh ∈ [0, 1].

For a rule r, we use frb and r to denote the rule’s t-norm f, and implicator
 , respectively. We also use fr to denote the t-norm of which r is the residual
implicator.

A (FASP) program P is a finite set of rules. The set of all literals that occur
in P is called the Herbrand Base BP of P . The set of all rules in P that have
the literal l in the head is denoted as Pl.

A rule-interpretation is a function ρ : P → [0, 1] that associates a degree of
satisfaction ρ(r) to each rule r ∈ P . With every FASP program, the programmer
must define a monotonic aggregator function AP : (P → [0, 1])→ [0, 1], which
aggregates the values of all rules into a single degree of rule satisfaction for the
program.

Definition 2 (Interpretation of a FASP program). Let P be a FASP
program. An interpretation of P is any fuzzy set I ∈ F(BP). Interpretations
are extended to constants, extended literals and rules in a straightforward way:
for a constant c ∈ [0, 1], define I(c) = c. For extended literals, we define
I(not∼a) =∼ I(a). For a rule r = a← ,f b1, . . . , bn,not∼1c1, . . . ,not∼mcm, the
extension to the rule body rb is defined as: I(rb) = I(b1)f. . .fI(bn)fI(not∼1c1)f
. . .fI(not∼mcm), yielding the degree of satisfaction of r as I(r) = I(rb) I(rh).

For every interpretation I there is a corresponding rule interpretation Iρ,
defined by Iρ(r) = I(r) for all r from P .

Example 1. Consider a grounded version of the program Pintro from Section 1,
with the seat constants, person constants, the near and friend predicates as
given in the introduction, and the interpretations I1 and I2 as given in (1)-
(2). Interpretation I1 satisfies the constraint 0 ← l,fl unhappy(a) to degree
I1(unhappy(a)) l 0 = min(1 − .5 + 0, 1) = .5, while interpretation I2 satis-
fies this constraint only to degree .2. Note that the choice of the Lukasiewicz
implicator l in this constraint is crucial to preserve the gradual character of
the vague unhappy predicate in the rule satisfaction. Using the Gödel implicator
 m e.g. would force this rule to be evaluated in a crisp way (either the rule is
fully satisfied or it is not satisfied at all), hence loosing the nuance.

In the (crisp) rules on the contrary, the choice for the residual pair fm and
 m allows to enforce that a given person either sits on a given seat or not.
Indeed, a constraint like 0← m,fm sit(a, s1), not∼ssit(a, s1) is only satisfied to
degree 1 when the rule body is satisfied to degree 0. Since the minimum t-norm
does not have zero divisors, this situation only occurs when either I(sit(a, s1)) =
0, i.e. a does not sit on seat s1, or when I(not∼ssit(a, s1)) = 0, i.e. I(sit(a, s1)) =
1, in other words a sits on seat s1.

Residual implicators adhere to the property that x y = 1 iff x ≤ y. In
other words, according to Definition 2, an interpretation fully satisfies a rule
whenever it satisfies the head at least as much as the body. The interpretation

I3 = { sit(a, s1)1, sit(b, s2)1, sit(c, z)1, unhappy(a).9, . . . } (3)

fully satisfies the rule

unhappy(a)← m,fm sit(a, s1), sit(c, z), friend(a, c), not∼snear(s1, z)

since .9 ≥ min(1, 1, .5, 1). However, assigning .5 to unhappy(a) would already be
sufficient to fully satisfy the rule; in other words the desire to fully satisfy this
rule does not provide sufficient justification to assign to unhappy(a) a degree
higher than .5. To ensure that we only derive a minimal knowledge set from our
programs, we use the so called “support” of an interpretation with respect to a
given rule and relative to a given rule interpretation. Intuitively, this is the lowest
possible value that can be assigned to the head of the rule such that the rule is
satisfied to at least the degree that is required by the given rule interpretation.

Definition 3 (Support). Let P be a FASP program. We define the support of
an interpretation I of P with respect to the rule r ∈ P and relative to the rule
interpretation ρ of P as:

Is(r, ρ) = inf{ k ∈ [0, 1] | I(rb) r k ≥ ρ(r) }

We abbreviate Is(r, Iρ) as Is(r).

Theorem 1. Let P be a FASP program. For any interpretation I of P , rule
r ∈ P , and rule interpretation ρ of P the following holds:

Is(r, ρ) = I(rb)fr ρ(r)

For ρ = Iρ we have the following result:

Is(r) = I(rb) u I(rh)

The definition of fuzzy answer sets relies on the notion of unfounded sets,
which, intuitively, are sets of “assumption” literals that have no proper motiva-
tion from the program.

Definition 4 (Unfounded-free interpretation). Let I be an interpretation
of a program P . A set Y ⊆ BP is called unfounded w.r.t. I iff for each literal
l ∈ Y and rule r ∈ Pl it holds that either:

– Y ∩ Lit(rb) 6= ∅ or
– I(l) > Is(r) or
– I(rb) = 0

An interpretation I of P is unfounded-free iff supp(I)∩Y = ∅ for any unfounded
set Y w.r.t. I.

The first condition in Definition 4 prevents circular motivation between as-
sumptions. The second condition prohibits assumptions motivated by rules that
are not applied conservatively, i.e. a rule r is used to motivate a truth value
of the head in excess of the support that is actually available (from Is(r)). The
third condition finally helps to ensure that Definition 4 is a proper generalization
of the classical definition of unfounded sets [16].

Example 2. Consider an interpretation I = { a0.5, b0.5 } for program P2, defined
below.

r1 : a ← m,fm b
r2 : b ← m,fm a

As there is no rule supporting the fact that I(a) = 0.5 or I(b) = 0.5, this
interpretation contains more knowledge than what is inferable from the program
and is therefore unwanted. In fact e.g. Y = { a, b } is an unfounded set because
both Y ∩ Lit(r1) 6= ∅ and Y ∩ Lit(r2) 6= ∅. Since supp(I) ∩ Y 6= ∅, I is not
unfounded-free.

Answer sets of FASP programs are unfounded-free interpretations reflecting
the intuition that each literal in an answer set should have a proper motivation in
the program. Moreover, the rules of the program should be satisfied to a desired
degree.

Definition 5 (y-answer set). Let P be a FASP program and y ∈ [0, 1]. An
interpretation I of P is called a y-answer set iff I is unfounded-free and AP (Iρ) ≥
y.

Example 3. Consider program Pintro from Section 1 and its interpretations I1,
I2, and I3 as given in (1)–(3). The set {unhappy(a) } is unfounded w.r.t. I3 as for
each grounded instance r of the (u) rules with unhappy(a) in the head, it holds
that I3(unhappy(a)) > (I3)s(r). Hence I3 is not unfounded-free. Interpretations
I1 and I2 on the other hand are unfounded-free. Furthermore one can verify that
APintro

((I1)ρ) ≥ .5 and APintro
((I2)ρ) ≥ .2, in other words I1 and I2 are resp. a

.5-answer set and a .2-answer set of Pintro .

4 Fuzzy propositional logic

We build a fuzzy propositional logic starting from a set of t-norms {f1, . . . ,fn },
their residual implicators { 1, . . . , n } and a set of negators {∼1, . . . ,∼k },
all of which are defined over [0, 1]. Furthermore there is a set of variable symbols
{ v1, . . . , vl }. Further connectives are ≈, t and u, where t and u are the infix
supremum and infimum resp. and where ≈ is defined as p ≈ q = (p q)f (q
p), for f a t-norm and its residual implicator.

The syntax of this fuzzy propositional logic is defined as follows. A proposition
is either a constant from [0, 1], a variable, or an expression of one of the following
forms, where p and q are propositions: p fi q, where i ∈ 1 . . . n, p i q, where

i ∈ 1 . . . n, ∼i p, where i ∈ 1 . . . k, p ≈i q, where i ∈ 1 . . . n, p t q, or p u q. A
theory is a set of propositions.

The semantics of this logic is defined in a straightforward way. Let I be a
fuzzy set over the variables of a proposition. Then I is inductively extended to
propositions as follows: let p and q be fuzzy propositions and I an interpretation
over the variables of p and q, then I(l) = l, where l ∈ [0, 1], I(pfq) = I(p)fI(q),
I(p q) = I(p) I(q), I(∼ p) =∼ I(p), I(p t q) = I(p) t I(q) and I(p u q) =
I(p) u I(q). A fuzzy set over the variables of a proposition is then called an
interpretation of this proposition.

We say that an interpretation I is a model of a theory P , whenever ∀p ∈ P ·
I(p) = 1 and denote this as I |= P .

5 Fuzzy Completion

In this section we show how certain fuzzy answer set programs can be translated
to fuzzy theories such that the models of these theories will be y-answer sets and
vice versa.

Definition 6 (Fuzzy y-completion). Let P be a FASP program with aggre-
gator AP and let y ∈ [0, 1]. The fuzzy completion of the body of a rule r ∈ P ,
with r = a← ,f b1, . . . , bn,not∼1c1, . . . ,not∼mcm, is the propositional formula

Comp(rb) = b1 frb . . . frb bnfrb ∼1 c1 frb . . . frb ∼m cm

The completion of the rule r is defined as:

Comp(r) = Comp(rb) u rh

Assume that the aggregator is representable as a fuzzy propositional formula,
i.e. that a proposition Compy(AP) exists such that for any interpretation I of
P , AP (Iρ) ≥ y iff I |= Compy(AP). The fuzzy y-completion of the program P
is then defined as:

Compy(P) = { l ≈
⊔
{Comp(r) | r ∈ Pl } | l ∈ BP } ∪ Compy(AP)

for ≈ an arbitrary equivalence relation.

Note that the y in the completion is the same y we use for y-answer sets,
thus the intention is that the models of the y-completion of a program will be
the y-answer sets of the program.

Example 4. Consider the following program P :

r1 : a← m,fm not∼sb
r2 : b ← m,fm not∼sa

with aggregator AP (ρ) = inf{ ρ(r) | r ∈ P }. The aggregator of this program
is representable in fuzzy propositional logic as the formula y (∼s b m

a) u (∼s a m b). The completion of this program will then be the following
fuzzy propositional theory:

a ≈m ((∼s b) u a)
b ≈m ((∼s a) u b)

y m (∼s b m a) u (∼s a m b)

It is easy to see that the interpretation I = { a0.8, b0.2 } is a 1-answer set of this
program and will also be a model of the completion Comp1(P).

Readers familiar with the completion in traditional logic programming may
wonder why our completion uses Comp(rb) u rh instead of the more usual
Comp(rb) in the right-hand side of the equations. This is necessary in order
to support the partial satisfaction of rules. Indeed, using Comp(rb) would force
rules to be fully satisfied, while using Comp(rb) u rh allows interpretations for
which I(rh) < I(rb), leading to (I(rb) r I(rh)) < 1, hence interpretations that
only partially satisfy rules.

In the fuzzy y-completion of a program P , we do not introduce a separate
proposition for literals l that do not appear in the head of any rule from P ,
since these will be subsumed by the introduction of l ≈

⊔
∅ (with our choice

of equivalence relations), which is equivalent to l ≈ 0 by definition of
⊔

. No
separate propositions are added for constraints, i.e. rules with a value from [0, 1]
in the head, either, since constraints are only used to determine the aggregated
satisfaction value of the program and hence are only needed in the aggregator
proposition.

Finally, the condition on aggregators to be representable in fuzzy proposi-
tional logic is necessary to solve programs using SAT-solvers. That this condition
still allows for sufficient expressiveness is illustrated by the fact that the aggre-
gator of the program in the introduction can be represented as

Compy(APintro) = [1 m (c1 f
m c2 f

m crisp fm sit fm all fm u)] u [y l q]

One can now show that any y-answer set of a program P is a model of its
completion Compy(P).

Theorem 2. Let P be a FASP program. Then if the aggregator is representable
in fuzzy propositional logic, any y-answer set of P is a model of Compy(P).

The reverse of Theorem 2 is not true in general, since it is already invalid
for classical answer set programming. The problem is with the completion of
programs that have “loops”, as shown in the following example.

Example 5. Consider P2 from Example 2. The y-completion of this program is:

a ≈ b u a
b ≈ a u b

y m (a m b) u (b m a)

The interpretation I = { a1, b1 }, is a model of Compy(P2), but it is not a y-
answer set of P2, as the only y-answer set (with y > 0) of this program is
{ a0, b0 }.

As in the crisp case, when a program has no loops in its positive dependency
graph however, the models of the y-completion and the y-answer sets do coincide.
First we define what a loop of a logic program actually means and then we
formally state that the aforementioned holds.

Definition 7 (Loop). Let P be a FASP program. The positive dependency
graph of P is then a directed graph GP = (BP , R) where aR b ≡ ∃r ∈ Pa ·
b ∈ Lit(rb). We denote this relation also with GP (a, b) for any literals a and b
in the Herbrand base of P . We call a non-empty set L ⊆ BP a loop iff for all
literals a and b in L there is a path (with length > 0) from a to b in GP such
that all vertices on this path are elements of L.

Using this definition, one can easily see that the program from Example 2
contains the loop L = { a, b }.

Theorem 3. Let P be a FASP program. If P has no loops in its positive de-
pendency graph and its aggregator is representable in fuzzy propositional logic, it
holds that I is a y-answer set of P iff I |= Compy(P).

6 Solving the loop problem

As mentioned in the previous section, sometimes the models of the y-completion
are not y-answer sets, which hinders the possibility of using the y-completion of
a program to e.g. compute y-answer sets using a fuzzy satisfiability solver. In this
section, we investigate how the solution for boolean answer set programming,
which consists of adding loop formulas to the completion [12], can be extended
to fuzzy answer set programs.

For this extension, we will start from a partition of the rules whose heads
are in a loop, for a given loop L. Based upon this partition, we will then define
a condition that must be fulfilled and can be expressed in fuzzy propositional
logic, such that any model of the y-completion satisfying it, will no longer have
the problem of attaching a value that is too high to atoms that occur in a loop.

For any program P and loop L we consider the following partition of rules
with heads in the loop of P (due to [12]):

R+
P (L) = { a← B | (a← B) ∈ P ∧ a ∈ L ∧B ∩ L 6= ∅ }

R−P (L) = { a← B | (a← B) ∈ P ∧ a ∈ L ∧B ∩ L = ∅ }

Intuitively, this means that R+
P (L) contains the rules that are “in” the loop

L, i.e. that are responsible for the creation of the loop in the positive dependency
graph, whereas the rules in R−P (L) are the rules that are outside of this loop. We
will refer to them as “loop rules”, resp. “non-loop rules”. Recalling the program

from Example 2, the partitions of rules with respect to the loop L = { a, b }
would be R+

P (L) = { a← m,fm b, b← m,fm a } and R−P (L) = ∅.
All literals in the support of a y-answer set are derived using rules that are

not contained in any loop. Therefore, like in [12], this motivates the use of “loop
formulas” to eliminate any model of the completion in which the value of a
literal is derived using only loop rules (or is higher than what the non-loop rules
could conclude). Considering Example 2 once again, one can see that for the
interpretation I0 = { a1, b1 }, the loop rules were used to attach the high values
to a and b. The only interpretation that does not use the loop rules would be
I1 = { a0, b0 }.

There is thus a problem when the values of literals in a loop are only sup-
ported by other literals in the loop. This is the case when their value is only
supported by loop rules, as the support of these rules is by definition always
based on literals in the loop. Hence to solve this problem, we should require that
at least one non-loop rule supports the value of loop literals. Only one rule’s
support is needed as this support propagates through the loop.

Example 6. As an illustration of the above remark, consider program P6.

r1 : a← m,fm 0.8
r2 : a← m,fm b
r3 : b← m,fm a

with aggregator AP (ρ) = inf{ ρ(r) | r ∈ P6 }.
There is a loop L = { a, b } in P6, with loop sets R+

P6
(L) = { r2, r3 } and

R−P6
(L) = { r1 }. The interpretation I = { a1, b1 } is a model of Comp1(P6) since

I |= a ≈ (0.8 u a) t (a u b) as (0.8 u I(a)) t (I(b) u I(a)) = 1, I |= b ≈ b u a
likewise and I |= 1 m (0.8 m a) u (b m a) u (a m b) as 0.8 m I(a) = 1
since 0.8 ≤ I(a) and likewise (I(b) m I(a)) = 1 and (I(a) m I(b)) = 1. I is
not a 1-answer set of P6 however, as L ∩ supp(I) 6= ∅ and L is unfounded due
to I(a) > 0.8, Lit(r2b) ∩ L 6= ∅ and Lit(r3b) ∩ L 6= ∅. In other words, I has only
used loop rules to determine the values of a and b.

The set I ′ = { a0.8, b0.8 } is however a 1-answer set as the non-loop rule r1
was used to derive the value of literal a. Since the value of b is derived from this
non-loop-derived value of a, the use of the loop rule r3 to determine the value
of b then poses no problem.

Summing all of this up, the definition then becomes:

Definition 8 (Loop formula). Let P be a FASP program and L = { l1, . . . , lm }
a loop in the positive dependency graph of P . Suppose that R−P (L) = { r1, . . . , rn }.
Then the loop formula associated with the loop L, denoted by LF(L,P), is the
following fuzzy proposition:

l1 t . . . t lm Comp(r1) t . . . t Comp(rn)

If R−P (L) = ∅, the loop formula becomes:

l1 t . . . t lm 0

The loop formula proposed for boolean answer set programs in [12] is of the
form

¬(
∧
B11 ∨ . . . ∨

∧
B1k1 ∨ . . . ∨

∧
Bn1 ∨ . . . ∨

∧
Bnkn)⇒ (¬l1 ∧ . . . ∧ ¬lm)

It can easily be seen that our loop formulas are a straightforward generalisation
of this loop formula as the latter is equivalent to

(l1 ∨ . . . ∨ lm)⇒ (
∧
B11 ∨ . . . ∨

∧
B1k1 ∨ . . . ∨

∧
Bn1 ∨ . . . ∨

∧
Bnkn)

Furthermore, since I |= l1 t . . . t lm 0 only when I(l1) t . . . t I(lm) ≤ 0,
it is easy to see that in the case where no rules exist outside of the loop, the
maximum amount of knowledge we can derive from our program is that the
literals in the loop are all “false” (0).

Example 7. Consider program P2 from Example 2 again. There is a loop L =
{ a, b } in GP with as loop formula a t b m 0, since the set R−P (L) = ∅.
I0 = { a1, b1 } is not a model of this formula, as I0(a) t I0(b) 0 = 1 ≡
I0(a)t I0(b) ≤ 0. Hence, only the interpretation I1 = { a0, b0 } is a model of this
loop formula, which is the intended behaviour.

Considering program P6 from Example 6, we can see that the loop L = { a, b }
has the loop formula a t b a u 0.8. Since I |= a t b m a u 0.8 only if a ≤ 0.8
and b ≤ au 0.8, interpretation I from Example 6 is eliminated as a model while
I ′ is preserved.

We now show that by adding loop formulas to the completion of a program,
we get a propositional theory that is both sound and complete with respect to
the answer set semantics. First we show that this procedure is complete.

Theorem 4. Let P be a FASP program and let LF(P) be the set of all loop
formulas of P , i.e. the set of loop formulas for any loop L in P . Then for
any interpretation I of P it holds that if I is a y-answer set of P , then I |=
LF(P) ∪ Compy(P).

Secondly we show that it is sound.

Theorem 5. Let P be a FASP program and LF(P) be the set of all loop formulas
of P . Then for any interpretation I of P it holds that if I |= LF(P)∪Compy(P),
then I is a y-answer set of P .

A straightforward procedure for finding answer sets would now be to extend
the completion of a program with all possible loop formulas and let a fuzzy SAT
solver generate models of the resulting propositional theory. The models of the
propositional theory that we get this way will be y-answer sets of the program,
as ensured by Theorems 4 and 5. This however has a potential drawback, as the
amount of loops can grow exponentially. In [12] a procedure to overcome this
problem was proposed, where loop formulas are added iteratively, when a model
of the completion generated by a SAT-solver violates a loop formula. We will
show that the same procedure can be used for finding fuzzy answer sets. For this,
we need a characterization of answer sets in terms of the consequence operator.

Definition 9 (Consequence operator). Let P be a FASP program and let ρ
be a rule interpretation of P . The consequence operator of P and ρ is defined
as follows:

ΠP,ρ : (BP → [0, 1])→ BP → [0, 1]

ΠP,ρ(I)(l) = sup
r∈Pl

Is(r, ρ)

This operator is monotonic and thus has a least fixpoint [17], denoted as
lfp(ΠP,ρ). Furthermore, a reduct is defined as follows:

Definition 10 (Reduct). Let P be a FASP program. Then the reduct of a
rule r ∈ P , where r = a← ,f b1, . . . , bn,not∼1c1, . . . ,not∼mcm, with respect to
an interpretation I is denoted as rI and defined as rI = a ← ,f b1, . . . , bn,∼1

I(c1), . . . ,∼m I(cm). The reduct of a program P w.r.t. an interpretation I is
denoted as P I and defined as P I = { rI | r ∈ P }.

It can then be shown that a fixpoint characterisation exists for fuzzy answer
sets, as follows:

Theorem 6. Let P be a FASP program. Then I is a y-answer set of P iff
I = lfp(ΠP I ,Iρ) and AP (Iρ) ≥ y.

Using this characterisation of fuzzy answer sets, we have a quick way of
checking whether a model of the y-completion is a y-answer set. In case it is
not a y-answer set, the following theorem shows us that this means there is at
least one loop whose loop formula is violated. Furthermore, it identifies a set of
literals that contains the loop, enabling us to reduce the search space for finding
the loops.

Theorem 7. Let P be a FASP program. If an interpretation I of P is a model
of Compy(P) and I 6= lfp(ΠP I ,Iρ), then some L ⊆ supp(I \ lfp(ΠP I ,Iρ)) must
exist such that L is a loop and I 6|= LF(L,P).

Now, we can extend the ASSAT-procedure proposed in [12] to fuzzy answer
set programs. The main idea of this method is to use a fuzzy SAT-solver to
find models of the fuzzy propositional theory constructed from the completion
and the loop formulas of some maximal loops. If the model generated is not an
answer set, then the loop that is violated is sought and added to the theory and
the process is started again. The algorithm thus becomes:

1. Initialize Loops = ∅
2. Generate a model I of Compy(P)∪LF(Loops, P), where LF(Loops, P) is the

set of loop formulas of all loops in Loops.
3. If I = lfp(ΠP I ,Iρ), return I as it is a y-answer set. Else, find the loops

occurring in supp(I \ lfp(ΠP I ,Iρ)), add them to Loops and go to step 2.

As we only need to search for the loops of a subset of all literals due to
Theorem 7, which only needs to be done when a model is generated that is not
an answer set, this procedure does not need to add an exponential number of loop
formulas at the start. Based on the experimental results in [12], we would expect
a similar improvement when finding fuzzy answer sets using fuzzy SAT-solvers.

7 Conclusions and future work

We defined a fuzzy version of Clark’s completion, creating a basis for different
kinds of (fuzzy) answer set solvers. Furthermore, we defined loop formulas that
ensure that the completion semantics coincide with the program semantics in the
presence of loops in the positive dependency graph. We have also shown how,
similar to the ASSAT procedure for answer set programs, loop formulas of fuzzy
answer set programs can be computed “on the fly”, thus avoiding a possibly
exponential blow-up of the number of loop formulas to consider.

As algorithms for solving the fuzzy SAT problem, with restrictions on the
operators used, have been developed [7,8,9], the results of this paper thus effec-
tively create a basis for practical implementations of the FASP paradigm. This is
enhanced by the possibility of iteratively adding loop formulas, as in the ASSAT
procedure for crisp answer set programming.

In the future, we intend to investigate solving the completion proposition
using a combination of a translation to linear programming and tableaux, as in
[7,9], but with less restrictions on the operators. Related with this, we intend to
investigate the possibilities in directly solving the program using mixed integer
programming as in [11].

A first prototype FASPMIP9 has already been developed It supports a sim-
ple concrete syntax to express a limited set of connectives and a restricted set
of aggregator functions.

As an example, the source (not including the “data”) for the program Pintro

from Section 1 is shown below.

sit(P,S) :/ Person(P),Seat(S). % choice
:- sit(P,S),sit(PP,S), P /= PP.
:- sit(P,S),sit(P,SS), S /= SS.
:- sit(P,S),not sit(P,S). % crispify sit/2
unhappy(P) :- sit(P,S), sit(PP,SS), friend(P,PP), not near(S,SS).
:~ unhappy(P). % score
seated(P) :- sit(P,S). :- not seated(P),Person(P). % all seated

To compute the semantics of an input program, FASPMIP parses and grounds
the rules in the usual way. Then the program is translated to a set of linear
programming constraints corresponding to the y-completion of the program, see
also [11]. The resulting linear programming model is then written to a file using
the MathProg modeling language. The file serves as input for the LP/MIP glpsol
solver10, which computes a minimal y-answer set.

The output (for selected predicates) of FASPMIP for a 0.5-answer set of the
program Pintro from Section 1 is shown below.

[(near(s1,s2),0.8), (friend(a,c),0.5),(friend(a,b),0.8),
(unhappy(a),0.5),(sit(c,s3),1.0),(sit(b,s2),1.0), (sit(a,s1),1.0)]

9 Available from http://tinf2.vub.ac.be/faspsolver/faspmip-0.1.tar.gz.
10 glpsol is part of GLPK, the GNU Linear Programming Kit, see http://www.gnu.

org/software/glpk/glpk.html.

References

1. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the semantic web. In: Proceedings of the Second International Conference
on Rules and Rule Markup Languages for the Semantic Web (RuleML’06), IEEE
Computer Society (2006) 89–96

2. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. In: Proceedings of the First
International Conference on Web Reasoning and Rule Systems (RR’07), Springer-
Verlag (2007) 289–298

3. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer
set programming. Annals of Mathematics and Artificial Intelligence 50(3-4) (2007)
363–388

4. Damásio, C., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic pro-
grams: termination results and applications. In: Logics in Artificial Intelligence
(JELIA’04), Springer-Verlag (2004) 260–273

5. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming 12(3&4) (1992) 335–367

6. Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th In-
ternational Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems, (IPMU’06). (2006)

7. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Math-
ematics and Artificial Intelligence 12(3-4) (1994) 231–263

8. Lepock, C., Pelletier, F.J.: Fregean algebraic tableaux: Automating inferences
in fuzzy propositional logic. In: Proceedings of the 12th International Confer-
ence on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’05),
Springer-Verlag (2005) 43–48

9. Straccia, U.: Reasoning and experimenting within Zadeh’s fuzzy propositional
logic. Technical report, Paris, France (2000)

10. Clark, K.L.: Negation as failure. In: Logic and Databases, Plenum Press, New
York (1978) 293–322

11. Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.S.: Mixed integer programming
methods for computing nonmonotonic deductive databases. Journal of the ACM
41(6) (1994) 1178–1215

12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers.
Artificial Intelligence 157(1-2) (2004) 115–137

13. Novák, V., Perfilieva, I., Moc̆kor̆, J.: Mathematical Principles of Fuzzy Logic.
Kluwer Academic Publishers (1999)

14. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the Fifth International Conference and Symposium on Logic
Programming (ICLP/SLP’88), ALP, IEEE, The MIT Press (1988) 1081–1086

16. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the Association for Computing Machinery 38(3) (1991)
620–650

17. Tarski, A.: A lattice theoretical fixpoint theorem and its application. Pacific
Journal of Mathematics 5 (1955) 285–309

