Abstract
We show how a fuzzy answer set program can be compiled to an equivalent fuzzy propositional theory whose models correspond to the answer sets of the program. This creates a basis for constructing fuzzy answer set solvers, such as solvers based on fuzzy SAT-solvers or on linear programming.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the semantic web. In: Proceedings of the Second International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML 2006), pp. 89–96. IEEE Computer Society, Los Alamitos (2006)
Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)
Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer set programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 363–388 (2007)
Damásio, C., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 260–273. Springer, Heidelberg (2004)
Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12(3-4), 335–367 (1992)
Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2006 (2006)
Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence 12(3-4), 231–263 (1994)
Lepock, C., Pelletier, F.J.: Fregean algebraic tableaux: Automating inferences in fuzzy propositional logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 43–48. Springer, Heidelberg (2005)
Straccia, U.: Reasoning and experimenting within Zadeh’s fuzzy propositional logic. Technical report, Paris, France (2000)
Clark, K.L.: Negation as failure. In: Logic and Databases, pp. 293–322. Plenum Press, New York (1978)
Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.S.: Mixed integer programming methods for computing nonmonotonic deductive databases. Journal of the ACM 41(6), 1178–1215 (1994)
Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers. Artificial Intelligence 157(1-2), 115–137 (2004)
Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1999)
Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming (ICLP/SLP 1988), ALP, IEEE, pp. 1081–1086. The MIT Press, Cambridge (1988)
van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the Association for Computing Machinery 38(3), 620–650 (1991)
Tarski, A.: A lattice theoretical fixpoint theorem and its application. Pacific Journal of Mathematics 5, 285–309 (1955)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Janssen, J., Heymans, S., Vermeir, D., De Cock, M. (2008). Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories. In: Garcia de la Banda, M., Pontelli, E. (eds) Logic Programming. ICLP 2008. Lecture Notes in Computer Science, vol 5366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89982-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-89982-2_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89981-5
Online ISBN: 978-3-540-89982-2
eBook Packages: Computer ScienceComputer Science (R0)