Skip to main content

Selecting Informative Genes from Microarray Dataset Using Fuzzy Relational Clustering

  • Conference paper
Advances in Computer Science and Engineering (CSICC 2008)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 6))

Included in the following conference series:

  • 925 Accesses

Abstract

Selecting informative genes from microarray experiments is one of the most important data analysis steps for deciphering biological information imbedded in such experiments. This paper presents a novel approach for selecting informative genes in two steps. First, fuzzy relational clustering is used to cluster co-expressed genes and select genes that express differently in distinct sample conditions. Second, Support Vector Machine Recursive Feature Elimination (SVM-RFE) method is applied to rank genes. The proposed method is tested on cancer datasets for cancer classification. The results show that the proposed feature selection method selects better subset of genes than the original SVM-RFE does and improves the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Manfred, N., Laiwan, C.: Informative Gene Discovery for Cancer Classification from Microarray Expression Data. In: IEEE Workshop on Machine Learning for Signal Processing, pp. 393–398 (2005)

    Google Scholar 

  2. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.: Tissue Classification with Gene Expression Profiles. Journal of Computational Biology 7, 559–584 (2000)

    Article  Google Scholar 

  3. Park, P.J., Pagano, M., Bonetti, M.: A Nonparametric Scoring Algorithm for Identifying Informative Genes from Microarray Data. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 52–63 (2001)

    Google Scholar 

  4. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research (3), 1157–1182 (2003)

    Google Scholar 

  5. Wang, M., Wu, P., Xia, S.: Improving Performance of Gene Selection by Unsupervised Learning. In: Proceedings of Neural Networks and Signal Processing, vol. 1, pp. 45–48 (2003)

    Google Scholar 

  6. Inza, I., Sierra, B., Blanco, R.: Gene Selection by Sequential Search Wrapper Approaches in Microarray Cancer Class Prediction. Journal of Intelligent and Fuzzy Systems 12, 25–34 (2002)

    MATH  Google Scholar 

  7. Deutsch, J.M.: Evolutionary Algorithms for Finding Optimal Gene Sets in Microarray Prediction. Bioinformatics 19, 45–52 (2003)

    Article  Google Scholar 

  8. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection, for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  9. Bojadziev, G., Bojadziev, M.: Fuzzy Sets, Fuzzy Logic, Applications. World Scientific, New Jersey (1995)

    Book  MATH  Google Scholar 

  10. Dong, Y., Zhuang, Y., Chen, K., Taib, X.: A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets and Systems 157, 1760–1774 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. http://www.broad.mit.edu/cancer

  12. http://microarray.princeton.edu/oncology

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kasiri-Bidhendi, S., Shiry Ghidary, S. (2008). Selecting Informative Genes from Microarray Dataset Using Fuzzy Relational Clustering. In: Sarbazi-Azad, H., Parhami, B., Miremadi, SG., Hessabi, S. (eds) Advances in Computer Science and Engineering. CSICC 2008. Communications in Computer and Information Science, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89985-3_102

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89985-3_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89984-6

  • Online ISBN: 978-3-540-89985-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics