Skip to main content

On the Importance of the Number of Fanouts to Prevent the Glitches in DPA-Resistant Devices

  • Conference paper
Advances in Computer Science and Engineering (CSICC 2008)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 6))

Included in the following conference series:

Abstract

During the last years several logic styles have been proposed to counteract power analysis attacks. This article starts with a brief review of four different logic styles namely RSL, MDLP, DRSL, and TDPL. This discussion continues to examine the effect of the number of fanouts in power consumption of a CMOS inverter. Moreover, it is shown that insertion of delay elements in typical CMOS circuits is not adequate to prevent the glitches and information leakage unless the fanouts of input signals are balanced. Whereas enable signals have to be classified according to the depth of combinational circuits implemented using pre-charge logic styles, we show that the number of fanouts of enable signals (which is equal to the number of gates in each depth) is a significant factor in determining the interval between arrival time of the consecutive enable signals.

This project is partially supported by Iran National Science Foundation and Iran Telecommunication Research Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bucci, M., Giancane, L., Luzzi, R., Trifiletti, A.: Three-Phase Dual-Rail Pre-charge Logic. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 232–241. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 242–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Fischer, W., Gammel, B.M.: Masking at Gate Level in the Presence of Glitches. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 187–200. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Mangard, S., Schramm, K.: Pinpointing the Side-Channel Leakage of Masked AES Hardware Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Popp, T., Mangard, S.: Masked Dual-Rail Pre-Charge Logic: DPA Resistance without Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Suzuki, D., Saeki, M.: Security Evaluation of DPA Countermeasures Using Dual-Rail Pre-charge Logic Style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 255–269. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A Countermeasure against DPA based on Transition Probability. Cryptology ePrint Archive, Report 2004/346 (2004), http://eprint.iacr.org/

  11. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic with Signal Independent Power Consumption to Withstand Differential Power Analysis on Smart Cards. In: European Solid-State Circuits Confer., pp. 403–406 (2002)

    Google Scholar 

  12. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: DATE 2004, pp. 246–251. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  13. Weste, N.H.E., Eshraghian, K.: Principles of CMOS VLSI Design – A Systems Perspective, 2nd edn. Addison-Wesley, Reading (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moradi, A., Salmasizadeh, M., Manzuri Shalmani, M.T. (2008). On the Importance of the Number of Fanouts to Prevent the Glitches in DPA-Resistant Devices. In: Sarbazi-Azad, H., Parhami, B., Miremadi, SG., Hessabi, S. (eds) Advances in Computer Science and Engineering. CSICC 2008. Communications in Computer and Information Science, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89985-3_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89985-3_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89984-6

  • Online ISBN: 978-3-540-89985-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics