Skip to main content

Quality-Based Score Normalization and Frame Selection for Video-Based Person Authentication

  • Conference paper
Biometrics and Identity Management (BioID 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5372))

Included in the following conference series:

Abstract

This paper addresses the incorporation of quality measures to video-based person authentication. A theoretical framework to incorporate quality measures in biometric authentication is exposed. Two different quality-based score normalization techniques are derived from this theoretical framework. Furthermore, a quality-based frame selection technique and a new face image quality measure are also presented. The ability of this quality measure and the proposed quality-based score normalization techniques and quality-based frame selection technique to improve verification performance is experimentally evaluated in a video-based face verification experiment on the BANCA Database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alba Castro, J.L., González Jiménez, D., Argones Rúa, E., González Agulla, E., Otero Muras, E.: Pose-corrected Face Processing on Video Sequences for Webcam-based Remote Biometric Authentication. Journal of Electronic Imaging 17 (2008)

    Google Scholar 

  • Bailly-Baillière, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariéthoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Ruiz, B., Thiran, J.P.: The BANCA Database and Evaluation Protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  • Fiérrez Aguilar, J., Ortega García, J., González Rodríguez, J., Bigün, J.: Discriminative Multimodal Biometric Authentication based on Quality Measures. Pattern Recognition 38(5), 777–779 (2005)

    Article  Google Scholar 

  • Kryszczuk, K., Drygajlo, A.: Q – stack: Uni- and Multimodal Classifier Stacking with Quality Measures. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 367–376. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Lienhart, R., Maydt, J.: An Extended Set of Haar-like Features for Rapid Object Detection. In: Proceedings of the 2002 International Conference on Image Procesing, vol. I, pp. 900–903 (2002)

    Google Scholar 

  • Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, M.: Face Recognition Vendor Test. Evaluation Report. Tech. rep., NISTIR (2003)

    Google Scholar 

  • Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Argones Rúa, E., Alba Castro, J.L., García Mateo, C. (2008). Quality-Based Score Normalization and Frame Selection for Video-Based Person Authentication. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds) Biometrics and Identity Management. BioID 2008. Lecture Notes in Computer Science, vol 5372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89991-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89991-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89990-7

  • Online ISBN: 978-3-540-89991-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics