Skip to main content

An Empirical Comparison of Individual Machine Learning Techniques in Signature and Fingerprint Classification

  • Conference paper
Biometrics and Identity Management (BioID 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5372))

Included in the following conference series:

Abstract

This paper describes an empirical study to investigate the performance of a wide range of classifiers deployed in applications to classify biometric data. The study specifically reports results based on two different modalities, the handwritten signature and fingerprint recognition. We demonstrate quantitatively how performance is related to classifier type, and also provide a finer-grained analysis to relate performance to specific non-biometric factors in population demographics. The paper discusses the implications for individual modalities, for multiclassifier but single modality systems, and for full multibiometric solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nist Fingerprint Image 2. User’s guide to

    Google Scholar 

  2. Allah, M.M.A.: Artificial neural networks based fingerprint authentication with clusters algorithm. Informatica (Slovenia) 29(3), 303–308 (2005)

    Google Scholar 

  3. Allah, M.M.A.: A novel line pattern algorithm for embedded fingerprint authentication system. ICGST International Journal on Graphics, Vision and Image Processing 5, 29–35 (2005)

    Google Scholar 

  4. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  6. Canuto, A.M.P.: Combining Neural Networks and Fuzzy Logic for Aplications in Character Recognition. PhD thesis, Department of Electronics, University of Kent, Canteburry, UK, Maio (2001)

    Google Scholar 

  7. Chen, Y., Dass, S.C., Jain, A.K.: Fingerprint quality indices for predicting authentication performance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 160–170. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Chikkerur, S., Cartwright, A.N., Govindaraju, V.: Fingerprint enhancement using stft analysis. Pattern Recognition Letter 40(1), 198–211 (2007)

    Article  MATH  Google Scholar 

  9. Elkan, C.: Boosting and naive bayesian learning. Technical report (1997)

    Google Scholar 

  10. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: ICML, pp. 70–77 (1994)

    Google Scholar 

  11. Guest, R.M.: The repeatability of signatures. In: IWFHR 2004: Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR 2004), Washington, DC, USA, pp. 492–497. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  12. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  13. Khan, N.Y., Javed, M.Y., Khattak, N., Chang, U.M.Y.: Optimization of core point detection in fingerprints. In: DICTA, pp. 260–266 (2007)

    Google Scholar 

  14. Leisch, F., Jain, L.C., Hornik, K.: Cross-validation with active pattern selection for neural-network classifiers. IEEE Transactions on Neural Networks 9(1), 35–41 (1998)

    Article  Google Scholar 

  15. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: Fvc2002: Second fingerprint verification competition. In: ICPR 2002: Proceedings of the 16 th International Conference on Pattern Recognition (ICPR 2002), Washington, DC, USA, vol. 3, p. 30811. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  16. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  17. Nello, C., John, S.-T.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (March 2000)

    MATH  Google Scholar 

  18. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  19. Rosenblatt, F.: The perception: a probabilistic model for information storage and organization in the brain, pp. 89–114 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abreu, M., Fairhurst, M. (2008). An Empirical Comparison of Individual Machine Learning Techniques in Signature and Fingerprint Classification. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds) Biometrics and Identity Management. BioID 2008. Lecture Notes in Computer Science, vol 5372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89991-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89991-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89990-7

  • Online ISBN: 978-3-540-89991-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics