Skip to main content

Invited Talk: Embedding Classical into Quantum Computation

  • Chapter
Mathematical Methods in Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5393))

Abstract

We describe a simple formalism for generating classes of quantum circuits that are classically efficiently simulatable and show that the efficient simulation of Clifford circuits (Gottesman-Knill theorem) and of matchgate circuits (Valiant’s theorem) appear as two special cases. Viewing these simulatable classes as subsets of the space of all quantum computations, we may consider minimal extensions that suffice to regain full quantum computational power, which provides an approach to exploring the efficacy of quantum over classical computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Jozsa, R., Miyake, A.: Appearing as Proc. R. Soc (Lond.) A  464, 3089–3106 (2008); arXiv:quant-ph/0804.4050

    Google Scholar 

  3. Clark, S., Jozsa, R., Linden, N.: Quant. Inf. Comp.  8, 106–126 (2008)

    Google Scholar 

  4. Valiant, L.: SIAM J. Computing  31(4), 1229 (2002)

    Google Scholar 

  5. Knill, E.: (2001); arXiv:quant-ph/0108033

    Google Scholar 

  6. Terhal, B., DiVincenzo, D.: Phys. Rev. A  65, 032325 (2002)

    Google Scholar 

  7. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  8. Jordan, P., Wigner, E.: Zeitschrift fĂ¼r Physik.  47, 631 (1928)

    Google Scholar 

  9. Gottesman, D.: Stabilizer Codes and Quantum Error Correction, PhD thesis, California Institute of Technology, Pasadena, CA (1997)

    Google Scholar 

  10. Shi, Y.: Quant. Inf. Comp. 3, 84-92 (2003)

    Google Scholar 

  11. Clark, S.: J. Phys. A: Math. Gen.  39, 2701–2721 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jozsa, R. (2008). Invited Talk: Embedding Classical into Quantum Computation. In: Calmet, J., Geiselmann, W., MĂ¼ller-Quade, J. (eds) Mathematical Methods in Computer Science. Lecture Notes in Computer Science, vol 5393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89994-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89994-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89993-8

  • Online ISBN: 978-3-540-89994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics