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Community resources

Touch of Class rests (at the time of publication) on six years of teaching the “Introduction 
to Programming” course at ETH Zurich, taken by all entering computer science students. 
In connection with the course and the book we have developed a considerable amount of 
pedagogical material. Instructors are welcome to use this material for their own teaching. 
On the Web page for both this book and the course

http://touch.ethz.ch

you will find links to:
• The full set of our course slides (PowerPoint + PDF) in its latest version.
• Streamable and downloadable video recordings of our lectures.
• Supplementary material.
• Exercises.
• Slides for exercise sessions (tutorials).
• Mailing list and Wiki page for instructors using Touch of Class as their textbook.
• Traffic software for download (Windows, Linux, ...)
• Published articles and technical reports on our pedagogical work in connection with 

the course, and our other work on computer science education including the 
TrucStudio course development framework.

• Information about courses using the textbook in other universities.
• Errata.
• An instructor’s corner (requiring registration), for instructors of courses having 

adopted the book, with suggestions for homeworks and exams and some solutions.
All this material is freely available for academic use in connection with the present 
textbook (see license terms on the site). For other uses please contact us.
Most of the material, in particular the course slides and video recordings, is in English. 
German versions are available for some of the exercise session slides. We expect to add 
material in other languages as it becomes available; if you translate slides or other 
elements into another language, we will be happy to include the translations.
More generally we welcome all community contributions.

http://touch.ethz.ch




Dedication

This book is dedicated to two pioneers of computer science, as thanks for their 
unending influence and in recognition of their many brilliant insights:

C.A.R. Hoare, on the occasion of his 75th birthday.
Niklaus Wirth, with special gratitude for his development of computing 
science (informatics) at ETH.





Prefaces

note
description:"[

This book has two prefaces, one for instructors and one for students, as stated 
here through a contrived but correct use of its own programming notation.

]"
class PREFACING inherit

KIND_OF_READER
create

choose
feature -- Initialization

choose
-- Get the preface that’s right for you.

do
if is_student then

student_preface.read
elseif is_instructor then

instructor_preface.read
else

pick_one_or_both
end

check
-- You learn about dynamic binding

note
why: "You will express this more elegantly" 

end
end

end





Student_preface * ∗The preface for inst- 
ructors is on page 
xxiii.

Programming is fun. Where else can you spend your days devising machines of 
your own imagination, build them without ever touching a hammer or staining 
your clothes, make them run as by magic, and get paid — not too bad, thanks 
for asking — at the end of the month?

Programming is tough. Where else do products from the most prestigious 
companies fail even in ordinary use? Where else does one find so many users 
complaining so loudly? Where else do engineers routinely work for hours or 
days trying to understand why something that should work doesn’t?

Get ready for the mastery of programming and its professional form, 
software engineering; get ready for both the toughness and the fun.

SOFTWARE EVERYWHERE

By going into computing science you have chosen one of the most exciting and 
fast-moving topics in science and technology. Fifty years ago it was not even 
recognized as a scientific subject; today hardly a university in the world is 
without a CS department. Thousands of books, journals, magazines and 
conferences cover the field. The global revenues of its industry — called 
information technology or IT — are in the trillions. No other field, in the history 
of technology, has undergone growth of either such magnitude or such speed.

And we have made a difference. Without software there would be no 
large-scale plane travel, and in fact no modern planes (or modern cars, or 
high-speed trains) since their design requires sophisticated “Computer-Aided 
Design” software. To pay its workers, any large corporation would employ 
hundreds of people just to write the paychecks. A phone would still be a device 
tied to the wall by a cable. After taking a picture, you still could not see the result 
until the roll of film came back from processing. There would be no video 
games, no camcorders, no iPods and no iPhones, no Skype, no GPS to guide you 
to your destination even when there is no one around to ask. To produce a report 
you would still hand-write a draft, give it to a typist, and go through rounds of 
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correction requests. A sudden itch to know the name of the captain in The Grand 
Illusion, or the population of Cape Town, or the author of a familiar citation, 
would require (rather than typing a couple of search words and getting the 
answer in a blink) a trip to the library. The list goes on; at the heart of countless 
practices that now pervade our daily life lie programs — increasingly 
sophisticated programs.

All this does not happen by itself. While computers may have become a 
commodity, programs — without which computers would be useless — 
definitely are not. Programming, the task of constructing new programs or 
improving existing ones, is a challenging intellectual pursuit that requires 
programmers possessing creativity and experience. Through this book you will 
become familiar with the world of programs and programming, with a view to 
becoming a professional in the field.

CASUAL AND PROFESSIONAL SOFTWARE DEVELOPMENT

Although more and more people are acquiring basic computing proficiency, 
being able to program at a professional level is another matter, and is what a 
curriculum in computing science will bring you.

For comparison, consider mathematics. A few centuries ago, just being able 
to add and subtract 5-digit numbers required a university education, and in 
return provided qualifications for such good jobs as accountant. Nowadays 
these skills are taught in grade school; if you want to become an engineer or a 
physicist, or just a stock trader, you need to study more advanced mathematical 
topics, such as calculus, in a university. The boundary between basic training 
and university-level education has moved up.

Computing is following the same evolution, only much faster — the scale 
is in decades, not centuries. Not so long ago, being able somehow to program a 
computer was enough to land a job. Do not expect this today; an employer will 
not be much more impressed if your résumé states “I have written programs” 
than if you say you can add numbers.

What increasingly counts is the difference between having some basic 
programming experience and being a software engineer. The former skill will 
soon be available to anyone who has gone through a basic education; but the 
latter is a professional qualification, just like advanced mathematics. Studying 
this book is a step towards becoming a computing professional.
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Factors that distinguish professional software development from casual 
programming include size, duration and change. In professional software 
development, you may become involved in programs that reach into the 
millions of lines of program text, must remain in operation for years or decades, 
and will undergo many changes and extensions in response to new 
circumstances. Many an issue that seems trivial or irrelevant when you are 
working on a medium-size program, meant only to solve a problem of 
immediate interest, becomes critical when you move to the scale of professional 
development. 

With this book I’ll try to prepare you for the real world of software, where 
systems are complex, solve serious problems (often affecting human life or 
property), stay around for a long time, and must lend themselves gracefully to 
requests for change.

PRIOR EXPERIENCE — OR NOT

This book does not assume any prior programming knowledge.

If you did program before, that experience will help you master the concepts 
faster. You will recognize some of the ideas, but you should also expect to be 
surprised at times, since the professional study of any topic is different from its 
use by the general public. Once in a while, for example, you may find that I 
belabor a seemingly simple matter. If so, you will (I think) discover after a while 
that the topic is not as simple as it seems at first, just as addition is more 
challenging to the mathematician than to the accountant. While you must be 
prepared to question some of your previous practices if they do not match the 
professional software engineering principles developed here, you can and 
should take advantage of everything you know. Learning to program well takes 
a lot of effort: every bit — every angle from which you can approach the 
problem — helps. In particular, the discussion relies, as explained below, on a 
supporting software system, Traffic. If you are familiar with programming and 
some programming languages, you will be able to discover some of Traffic by 
yourself, perhaps ahead of the official assignments. Do not hesitate to do so: one 
learns programming in part by reading existing programs for inspiration and 
imitation. You may have to do some guessing for elements of Traffic that rely 
on techniques and language constructs you have not formally studied yet, but 
this is where your experience will help you move faster.
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On the other hand, if you have not done any programming, you’re OK too. 
You might progress more slowly at the beginning, but should just study all the 
material carefully and do all the exercises. In particular, even though this book 
includes little actual mathematics, you will feel more comfortable if you have a 
mathematical mindset and the practice of logical reasoning. This is just as 
beneficial as programming experience, and will compensate for any handicap 
you feel relative to those fellow students in the back row who look like they 
typed their first program before they lost their baby teeth.

Programming, like the rest of computing science, is at the confluence of 
engineering and science. Success requires both a hands-on attitude (the 
“hacker” side, in the positive sense of the word), useful in technology-oriented 
work, and an ability to perform abstract, logical reasoning, required in 
mathematics and other sciences. Experience with programming helps you with 
the first goal; a logical mind helps you with the second. Wherever your strength 
lies, take advantage of it, and use this book to make up for any initial deficiency 
on the other side.

MODERN SOFTWARE TECHNOLOGY

Becoming a software professional requires more than one course or one book: 
it takes a multi-year curriculum in which — in addition to mathematical 
foundations such as logic and statistics — you will learn about software 
engineering, theory of computation, data structures, algorithms, operating 
systems, artificial intelligence, databases, hardware, networking, project 
management, software metrics, numerical computation, graphics and many 
other topics. But to prepare for these other computer science courses it is 
essential to use the best of what is known in software technology.

In recent years two major ideas, holding the potential for producing 
software of much better quality than was available before, have made their way 
into the software field: object-oriented software construction and formal 
methods. Both of these ideas, but especially the first, can be used to make the 
introductory study of computing more exciting and more profitable. Along with 
other concepts from modern software technology, they play a major role in this 
book. Let’s have a quick advance look at both.
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OBJECT-ORIENTED SOFTWARE CONSTRUCTION

Object-oriented (“O-O”) software construction follows from the realization that 
proper systems engineering must rely on a large inventory of high-quality 
reusable components, as in the electronic or construction industries. The O-O 
approach defines what form these components should have: each of them must 
be based on a certain type of objects. The term “object”, which gives its name 
to the method, does not just refer to objects of the application domain, such as 
circles or polygons in a graphics program, but also to objects that are purely 
internal to the software, such as a list. If you do not quite see what this all means, 
that’s normal; I hope that if you read this preface again in a few months it will 
all be crystal-clear!

Object technology (the shorter name for object-oriented software 
construction) is quickly changing the software industry. Becoming familiar with 
it from the very beginning of your computing studies is an excellent insurance 
policy against technical obsolescence.

FORMAL METHODS

Formal methods are the application of systematic reasoning techniques, based 
on mathematical logic, to the construction of reliable software. Reliability, or 
rather the lack of it, is a vexing problem in software; errors, or the fear of error, 
are the programmer’s constant companion. Anyone who uses computers has 
some anecdote about bugs.

Formal methods can help improve this situation. Learning formal methods 
in their full extent requires more knowledge than is available at the beginning 
of a university education. But the approach used in this book shows a significant 
influence of formal methods, in particular through the idea of Design by 
Contract, which considers the construction of software systems as the 
implementation of a number of individual contractual relations between 
modules, each characterized by a precise specification of obligations and 
benefits. I hope that you will understand the importance of these ideas and 
remember them for the rest of your career. In industry, everyone knows the 
difference between a programmer who just “hacks code” and one who is able to 
produce correct, robust and durable software elements.

A previous book 
(“Object-Oriented 
Software Construc-
tion”, 2nd edition, 
Prentice Hall,1997) 
covers object technol-
ogy in depth and at a 
more advanced level.
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LEARNING BY DOING

This book is not a theoretical presentation; it assumes that as you go along you 
practice what you learn on a computing system. The associated Web site 
provides links to the necessary software, in versions for Windows, Linux and 
other platforms, which you can download. Your school may also have the 
equivalent facilities available on its computers. In fact, the text prompts you, in 
some cases, to do the practical work with the software before learning the 
theoretical concepts.

The system that you will use for this course is an advanced object-oriented 
environment: EiffelStudio, an implementation of the Eiffel analysis, design and 
programming language. Eiffel is a simple, modern language, used worldwide in 
large, mission-critical industrial projects (banking and finance, health care, 
networking, aerospace etc.) as well as for teaching and research in universities. 
The EiffelStudio version that you will use is exactly the same as the professional 
version, with the same graphical development environment and fundamental 
reusable components such as the EiffelBase, EiffelVision and EiffelMedia 
libraries. Your school may also have an academic license providing for 
maintenance and support.

Appendices present an introduction to four other languages widely used in 
industry: Java, C#, C++ and C. Any good software engineer must be fluent in 
several programming languages, including at least some of these; learning Eiffel 
will be a plus on your résumé (a mark of professionalism) and will help you 
master other object-oriented languages.

FROM THE CONSUMER TO THE PRODUCER

Because from day one of the course you will have the whole power of 
EiffelStudio at your fingertips, you will be able to skip many of the “baby” 
exercises that have traditionally been used to learn programming. The approach 
of this book is based on the observation that to learn a technique or a trade it is 
best to start by looking at the example of excellent work produced by 
professionals, and taking advantage of it by (in order) using that work, 
understanding its internal construction, extending it, improving it — and 
starting to build your own. This is the time-honored method of apprenticeship, 
which places newcomers under the guidance of experts.

touch.ethz.ch.

http://touch.ethz.ch


ABSTRACTION xix

The expertise is represented here by software, more specifically library 
classes: software elements from the Traffic library, specially developed for this 
book. As you write your first software examples, you will use these classes to 
produce results which are already impressive even though you have not had 
much to write; you will simply be relying on the mechanisms defined by the 
classes, acting, through your own software, as a consumer of existing 
components. Then, as someone who knows how to drive but is studying to 
become an automobile engineer, you will be encouraged to lift the hood and see 
how these classes are made, so that you can later on write extensions to the 
classes, improve them perhaps, and write your own classes.

The Traffic library, as its name suggests, provides mechanisms for dealing 
with traffic in a city — cars, pedestrians, metros, trams, taxis … — with 
graphical visualization, simulations, route computation, route animation etc. It 
is a rich reservoir of applications and extensions: you can build on it to write 
video games, solve optimization problems and try out many new algorithms.

The built-in examples use Paris as the sample city, because it is a popular 
tourist destination; you can easily adapt them to another city without touching 
the Traffic software, since all the location information is provided separately in 
a file (using a standard format, XML). It suffices to provide such a file 
representing your chosen city. For example, the course as taught at ETH Zurich 
uses the Zurich tram system, replacing the Paris metro.

ABSTRACTION

Basing your work on existing components has another important consequence 
for your education as a professional software engineer. The program modules 
that you reuse are a substantial piece of software, embodying a lot of 
knowledge. It would be very difficult to use them for your own applications if 
you had to read the full program text of each one you need. Instead, you will 
rely on a description of their abstract interfaces, which are extracted from 
their text (by automatic software mechanisms, part of EiffelStudio) but retain 
only the essential information that you need as a consumer. An abstract 
interface is a description of the purpose of a software module that only states 
its functions, not how the module’s code realizes these functions. In software 
terminology it is also called the specification of the module, excluding the 
module’s implementation.
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This technique will help you learn one of the professional software 
developer’s key skills: abstraction, meaning here the ability to distinguish the 
purpose of any piece of software from the details, often numerous, of its 
implementation. Every software development professor and textbook preaches 
the virtues of abstraction, and for good reason; here you will get the occasional 
bit of preaching too, but mostly you will be encouraged to learn abstraction by 
example, experiencing its benefits through the reuse of existing components. 
When you get to build your own software, you should apply the same principles; 
that is the only way to tame the ogre of software complexity.

The benefits of abstraction are quite concrete; you will experience them 
right from the beginning. The first program you will write is only a few lines 
long, but already produces a significant result (an animated itinerary on a city 
map). It can do this only by using modules from Traffic; and it can use them only 
because they are available through an abstract specification. If you had to 
examine the text of these modules (their source code), then the text of the 
modules they rely on themselves, directly or indirectly, you would quickly 
drown in an ocean of details and could not produce anything.

Throughout your work with software, abstraction is the lifevest that will 
save you from drowning in the sea of complexity.

DESTINATION: QUALITY

This book teaches not only techniques but methodology. Throughout the 
presentation you will encounter design principles and rules on programming 
style. Sometimes you may think that I am being fussy and that you could write 
the program just as well without the rules. Well, often you could. But the 
methodological rules make the difference between an amateurish program, 
which sometimes works, sometimes not, and the kind of production-quality 
software that you will want to produce. You should apply these rules not just 
because this book and your teachers say so, but because the power and speed of 
computers magnify any deficiency, however small, and require that the 
programmer pay attention to both the big picture and every detail. They are also 
good job insurance for your future career: there are many programmers around, 
and what really differentiates them in the eyes of an employer is the long-term 
quality of the software they produce.

Do not fool yourself with the excuse that “this is only an exercise” or “this 
is only a small program”:

→ “A class text”,  2.1, 
page 15.
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• Exercises are precisely where you need to learn the best possible 
techniques; when Airbus hires you to write the control software for their 
next plane, it will be too late.

• Calling a program “small” is often more hope than guarantee. In industry, 
many big programs are small programs that grew, since a good program 
tends to give its users endless ideas for requesting new functionalities.

So you should apply the same methodological principles to all the programs you 
develop, whether small or large, educational or operational.

Such is the goal of this book: not just to take you through the basics of 
software engineering and to let you experience the fun and thrill of producing 
software that works, but also to develop — along with a sense of beauty for the 
principles, methods, algorithms, data structures and other techniques that define 
the discipline — a sense for what makes good software stand out, and a 
determination to produce programs of the highest possible quality.

BM 
Zurich / Santa Barbara, April 2009

November 2012: for this second printing all known errors have been corrected.





Instructor_preface * ∗The preface for stu-
dents is on page xiii.

Right from its subtitle, this book shows its colors: it is not just about learning to 
program but about “Learning to Program Well”. I am trying to get the students 
started on the right track so that they can enjoy programming — without 
enjoyment one does not go very far — and have a successful career; not just a 
first job, but a lifelong ability to tackle new challenges.

To help them reach this goal, the book applies innovative ideas detailed in 
the rest of this preface:

• Inverted curriculum, also known as the “outside-in” approach, relying on 
a large library of reusable components.

• Pervasive use of object-oriented and model-driven techniques.

• Eiffel and Design by Contract.

• A moderate dose of formal methods.

• Inclusion, from the very beginning, of software engineering concerns.

These techniques have for several years been applied to the “Introduction to 
Programming” course at ETH Zurich, taken by all entering Computer Science 
students. Touch of Class builds on this course and draws from its lessons. This 
also means that teachers using it as a textbook can rely on the teaching material 
developed for the course: slides, lecture schedules, exercises, self-study 
tutorials, student projects, even video recordings of our lectures.

THE CHALLENGES OF A FIRST COURSE

Many computer science departments around the world are wondering today 
how best to teach introductory programming. This has always been a difficult 
task, but new challenges have added themselves to the traditional ones:

• Adapting to ever higher stakes.

• Identifying the key knowledge and skills to teach.

• Coping with fads and outside pressures.

• Addressing a broad diversity of initial student backgrounds and abilities.

• Meeting high expectations for examples and exercises.

• Introducing the real challenges of professional software development.

• Teaching methodology and formal techniques without scaring off students.

← See “Community 
resources”,  page vii. 

This section is based 
on reference  [12].

http://se.ethz.ch/touch
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The stakes are getting ever higher. When educating future software 
professionals, we must teach durable skills. It is not enough to present 
immediately applicable technology, for which in our globalized industry a 
cheaper programmer will always be available somewhere.

We must identify the key knowledge and skills to teach. Programming is no 
longer a rare, specialized ability; a large proportion of the population gets exposed 
to computers, software and some rudimentary form of programming, for example 
through spreadsheet macros or Web site development with Python, Ruby on Rails 
or ASP.NET. Software engineers need more than the ability to program; they must 
master software development as a professional endeavor, and by this distinguish 
themselves from the masses of occasional or amateur programmers.

It is important to keep a cool head in the presence of fads and outside 
pressures. Fads are a given of our field, and they are not always bad — 
structured programming, object technology and design patterns were all fads 
once — but we must make sure an idea has proved its mettle before inflicting it 
on our students. Outside pressures can be more delicate to handle. Student 
families have more say nowadays; this too is not necessarily bad, but sometimes 
results in inappropriate demands that we teach the specific technologies 
required in the job advertisements of the moment. What this attitude misses is 
that four years later some of the fashionable acronyms will be different, and that 
competent industry recruiters look for problem-solving skills, not narrow 
knowledge. It is our duty to serve the very interests of the students and their 
families by teaching them the fundamental matters, which will give them not 
just a first job but a rewarding career.

This obsession with learning the right résumé-filling buzzwords for fear of not 
landing a job is silly anyway. It is a worldwide phenomenon, likely to last for decades, 
that a decent software developer has no trouble finding a good job. For all the gloom 
that the media have spread after the “burst of the Internet bubble”, and the fears that 
“all the jobs have gone to Bangalore”, no end is in sight to the challenges and 
excitement of our field, including of course for our colleagues in Bangalore. But there 
is a qualification: people who get and keep good jobs are not the narrow-minded 
specialists having been taught whatever filled the headlines of the day; they are the 
competent developers possessing a wide and deep understanding of computing 
science, and mastery of many complementary technologies.

The broad diversity of student backgrounds complicates the task. Among the 
students in the lecture hall on the first day of the introductory course, you will 
find some who have barely touched a computer, some who have already built an 
e-commerce site, and the full range in-between. What can the teacher do?
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• It is tempting to assume a fair amount of prior programming experience and 
teach to the most advanced students only; but this shuts out students who 
simply have not had the opportunity or inclination to work with computers 
yet. In my experience, they include some who can later turn out to be 
excellent computer scientists thanks to excellent abstraction skills, which 
they have so far applied to topics such as mathematics rather than 
computing. The nerdy image still widely associated with computers may 
have prevented them from realizing that it is not about late-night video 
game sessions fueled by home-delivery pizza (a picture which, in particular, 
turns off many girls with excellent computer science potential) but about 
cogent thinking applied to solving some of the most exciting intellectual 
challenges open to humankind.

• We must not either — at the other extreme — bring everyone down to the 
lowest level: we need a way to catch and retain the attention of the more 
experienced students, letting them use and expand the insights they have 
already gained.

Reliance on reusable components, discussed below, is a central part of this 
book’s solution to the issue. By giving students access to high-quality libraries, 
we let the novices take advantage of their functionality through abstract 
interfaces without needing at first to understand what’s inside. The more 
advanced and curious students can, ahead of the others, start to peek into the 
internals of the components and use them as guidance for their own programs. 

For this to work we need high-quality examples. Students today, having 
lived most of their lives in a world awash in the visual and auditory marvels of 
software-powered multimedia, expect to see and build more than small 
academic programs of the “Compute the 7-th Fibonacci number” kind. We must 
meet these expectations of the “Nintendo Generation” [3], without of course 
letting technological dazzle push aside the teaching of timeless skills.

A variant of this issue is what we may call the “Google-and-paste” phenomenon, 
the name I use for what colleagues (generally using Java or C++ as their teaching 
language) report as follows: you give an exercise that calls for, say, a 100-line 
program solution. Internet-savvy students quickly find on the Web some Java code 
that does the job, except that it does much more as part of, maybe, a 10,000-line 
program. Now it does not take long for beginners to hit upon a key piece of 
programming wisdom from the ages: that if you see a program that works you mess 
with it as little as you can. You hold your breath when coming anywhere close to it. 
Following this insight, the student will just switch off (rather than remove) the parts 
he or she does not need, through a minimal set of changes. So the teacher gets a 
10,000-line solution to an elementary question. Of course one may impose, if not a 
full prohibition of Web use (which in a computer science curriculum would be 
bizarre), precise rules that would exclude such a “solution”. But how exactly? 
“Google-and-paste” is, after all, a form of reuse, even if not exactly the kind 
advocated by software engineering textbooks.
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The approach of this book goes one step further. Not only do we encourage reuse, 
we actually provide a large amount of code (150,000 lines of Eiffel at the time of 
writing) for reuse, and also for imitation since it is available in source form and 
explicitly designed as a model of good design and implementation. Reuse is one of 
the “best practices” promoted by the course from the beginning; but it is a form of 
reuse in line with principles of software engineering, based on abstract interfaces 
and contracts.

These questions contribute to the next issue on our list: introducing the real 
challenges of professional software development. In a university-level 
computer science or software engineering program, we cannot just teach 
programming in the small. We have to prepare students for what matters to 
professionals: programming in the large. Not all techniques that work well for 
small programs will scale up. The very nature of an academic environment, 
especially at an introductory level, makes it hard to introduce students to the 
actual challenges of today’s industrial software: software developed by many 
people, expanding to many lines of code, adapted to many categories of uses and 
users, maintained over many years, and undergoing many changes.

This concern for scalability gives particular urgency to the last issue: 
introducing methodology and formal reasoning without disconnecting from 
the students. Methodological advice — injunctions to use information hiding, 
contracts and software engineering principles in general — can sound preachy 
and futile to beginners. Introducing some formal (mathematically-based) 
techniques, such as axiomatic semantics, can widen this potential gap between 
teacher and student. Paradoxically, the students who have already programmed 
a bit and stand to benefit most from such admonitions and techniques may be 
most tempted to discard them since they know from experience that it is possible 
— at least for small programs — to reach an acceptable result without strict rules. 
The best way to instill a methodological principle is pragmatic: by showing that 
it empowers you to do something that would otherwise be unthinkable, such as 
building impressive programs with graphics and animation. Our reliance on 
powerful libraries of reusable components is an example: right from the 
beginning of the course, students can produce significant applications, visual 
and all, thanks to these components; but they would never proceed beyond a few 
classes if as a prerequisite they had to read the code. The only reuse that works 
here is through abstract interfaces. 

Rather than pontificating on abstraction, information hiding and contracts, 
it is better to let the students use these techniques and discover that they work. 
If an idea has saved you from drowning, you will not discard it as sterile 
theoretical advice.
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OUTSIDE-IN: THE INVERTED CURRICULUM

The order of topics in programming courses has traditionally been bottom-up: 
start with the building blocks of programs such as variables and assignment; 
continue with control and data structures; move on if time permits — which it 
often does not in an introductory course — to principles of modular design and 
techniques for structuring large programs.

This approach gives the students a good practical understanding of the 
fabric of programs. But it fails to teach the system construction concepts that 
software engineers must master to be successful in professional development. 
Being able to produce programs is no longer sufficient; many non-professional 
software developers can do this honorably. What distinguishes the genuine 
professional is the mastery of system skills for the development and 
maintenance of possibly large and complex programs, open for adaptation to 
new needs and for reuse of some of their components. Starting from the nuts and 
bolts, as in the traditional “CS1” curriculum, may not be the best way to teach 
these skills.

Rather than bottom-up — or top-down — the order of this book is 
outside-in. It relies on the assumption that the most effective way to learn 
programming is to use good existing software, where “good” covers both the 
quality of the code — since so much learning happens through imitation of 
proven models — and, almost more importantly, the quality of its program 
interfaces (APIs).

From the outset we provide the student with powerful software: a set of 
libraries, called Traffic, where the top layers have been produced specifically for 
this book, and the basic layers on which they rely (data structures, graphics, 
GUI, time and date, multimedia, animation…) are widely used in commercial 
applications. All this library code is available in source form, providing a 
repository of high-quality models to imitate; but in practice the only way to use 
them for one’s own programs, especially at the beginning, is through API 
specifications, also known as contract views, which provide the essential 
information abstracted from the actual code. By relying on contract views, 
students are right from the start able to produce interesting applications, even if 
the part they write originally consists of just a few calls to library routines. As 
they progress, they learn to build more elaborate programs, and to understand 
the libraries from the inside: to “open up the black boxes”. By the end of the 
course they should be able, if needed, to produce such libraries by themselves.
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This Outside-In strategy results in an “Inverted Curriculum” where the 
student starts as a consumer of reusable components and learns to become a 
producer. It does not ignore the teaching of standard low-level concepts and 
skills, since in the end we want students who can take care of everything a 
program requires, from the big picture to the lowest details. What differs is the 
order of topics and particularly the emphasis on architectural skills, often 
neglected in the bottom-up curriculum.

The approach is intended to educate students so that they will master the key 
concepts of software engineering, in particular abstraction. In my career in 
industry I have repeatedly observed that the main quality that distinguishes good 
software developers is their ability to abstract: to separate the essential from the 
accessory, the durable from the temporary, the specification from the 
implementation. All good introductory textbooks duly advocate abstraction, but 
the result of such exhortations is limited if all the student knows of 
programming is the usual collection of small algorithmic examples. I can lecture 
on abstraction too, but in the end, as noted earlier, the most effective way to 
convey the concepts is by example; by showing to the student how he or she can 
produce impressive applications through the reuse of existing software. That 
software is large at least by academic standards; trying to reuse it by reading the 
source code would take months of study. Yet students can, in the first week of 
the course, produce impressive results by reusing it through the contract views.

Here abstraction is not just a nice idea that we ask our students to heed, 
another parental incitation to be good and do right. It is the only way to survive 
when faced with an ambitious goal which you can only reach by standing on 
someone else’s shoulders. Students who have gone early and often through this 
experience of building a powerful application through contract-based reuse of 
libraries do not need much more haranguing about abstraction and reuse; for 
them these concepts become a second nature.

Teaching is better than preaching, and if something is better than teaching it 
must be the demonstration — carried out by the students themselves — of the 
principles at work, and the resulting “Wow!”.

The supporting software

Central to the Outside-In approach of this book is the accompanying Traffic 
software, available for free download. The choice of application area for the 
library required some care:

• The topic should be immediately familiar to all students, so that we can spend 
our time studying software issues and solutions, not the problem domain. (It 
might be fun to take, say, astronomy, but we would end up discussing comets 
and galaxies rather than inheritance structures and class invariants.)

From touch.ethz.ch.

http://touch.ethz.ch
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• The area should provide a large stock of interesting algorithm and data 
structure examples, applications of fundamental computer science concepts, 
and new exercises that each instructor can devise beyond those in the book. 
This should extend beyond the introductory course, to enable our colleagues 
teaching algorithms, distributed systems, artificial intelligence and other 
computer science topics to take advantage of the software if they wish.

• The chosen theme should call for graphics and multimedia development as 
well as advanced graphical user interfaces.

• Unlike many video games, it must not involve violence and aggression, 
which would be inappropriate in a university setting (and also would not 
help correct the gender imbalance which plagues our field).

The application area that we retained is transportation in a city: modeling, 
planning, simulation, display, statistics. The supporting Traffic software is not 
just an application, doing a particular job, but a library, providing reusable 
components from which students and instructors can build applications. 
Although still modest, it has the basic elements of a Geographical Information 
System and the supporting graphical display mechanisms.

For its examples the book uses Paris, with its streets and transportation 
system; since the city’s description comes from XML files, it is possible to 
retarget the example to any other city. (In the second week of the first session of 
the course at ETH a few students spontaneously provided a file representing the 
Zurich transportation network, which we have been using ever since.)

The very first application that the student produces takes up twelve lines. Its 
execution displays a map, highlights the Paris Metro network on the map, 
retrieves a predefined route, and shows a visitor traveling that route through 
video-game-style graphical animation. The code is:

class PREVIEW inherit
TOURISM

feature
explore

-- Show city info and route.
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end
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The algorithm includes only four instructions, and yet its effect is impressive 
thanks to the underlying Traffic mechanisms.

In spite of the reliance on an extensive body of existing software, I stay 
away from giving any impression of “magic”. It is indeed possible to explain 
everything, at an appropriate level of abstraction. We should never say “just do 
as you are told, you’ll understand when you grow up”. This attitude is no better 
at educating students than it is at raising one’s own children. In the first example 
as shown above, even the inherit clause can be explained in a simple fashion: I 
do not go into the theory of inheritance, of course, but simply tell the students 
that class TOURISM is a helper class introducing predefined objects such as 
Paris, Louvre, Metro and Route1, and that a new class can “inherit” from such 
an existing class to gain access to its features. They are also told that they do not 
need to look up the details of class TOURISM, but may do so if they feel the born 
engineer’s urge to find out “how things work”. 

The rule, allowing our students to approach the topics progressively, is 
always to abstract and never to lie.

From programming to software engineering

Programming is at the heart of software engineering, but is not all of it. Software 
engineering concerns itself with the production of systems that may be large, are 
developed over a long time, undergo many changes, and meet strong constraints 
of quality, timeliness and cost. Although the corresponding techniques are usually 
not taught to beginners, it is important to provide at least a first introduction, 
which appears in the last chapter. The topics include requirements analysis (the 
programmers we educate should not just be techies focused on the machinery but 
should also be able to talk to customers and understand their needs), facets of 
software quality, an introduction to lifecycle models, the concept of agile 
development, quality assurance techniques and Capability Maturity Models.

An earlier chapter complements this overview by presenting software 
engineering tools, including compilers, interpreters and configuration 
management systems.

Terminology

Lucid thinking includes lucid use of words. I have devoted particular attention 
to consistent and precisely defined terminology. The most important definitions 
appear in call-out boxes, others in the main body of the text.

At the end of each chapter a “New vocabulary” section lists all the terms 
introduced, and the first exercise asks the student to provide precise definitions 
of each. This is an opportunity to test one’s understanding of the ideas 
introduced in the chapter.
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TECHNOLOGY CHOICES

The book relies on a combination of technologies: an object-oriented approach, 
Design by Contract, Eiffel as the design and programming language. It is 
important to justify these choices and explain why some others, such as Java as 
the main programming language, were not retained.

Object technology

Many introductory courses now use an object-oriented language, but not 
necessarily in an object-oriented way; few people have managed to blend 
genuine O-O thinking into the elementary part of the curriculum. Too often, for 
example, the first programs rely on static functions (in the C++ and Java sense 
of routines not needing a target object). There sometimes seems to be an implicit 
view that before being admitted to the inner chambers of modern technology 
students must suffer through the same set of steps that their teachers had to 
travel in their time. This approach retains the traditional bottom-up order, only 
reaching classes and objects as a reward to the students for having patiently 
climbed the Gradus ad Parnassum of classical programming constructs.

There is no good reason for being so fussy about O-O. After all, part of the 
pitch for the method is that it lets us build software systems as clear and natural 
models of the concepts and objects with which they deal. If it is so good, it 
should be good for everyone, beginners included. Or to borrow a slogan from 
the waiters’ T-shirts at Anna’s Bakery in Santa Barbara, whose coffee played its 
part in fueling the writing of this book: Life is uncertain — Eat dessert first! 

Classes and objects appear at the very outset and serve as the basis for the 
entire book. I have found that beginners adopt object technology 
enthusiastically if the concepts are introduced, without any reservations or 
excuses, as the normal, modern way to program.

One of the principal consequences of the central role of object technology 
in this presentation is that the notion of model guides the student throughout. 
The emergence of “model-driven architecture” reflects the growing recognition 
of an idea central to object technology: that successful software development 
relies on the construction of models of physical and conceptual systems. 
Classes, objects, inheritance and the associated techniques provide an excellent 
basis to teach effective modeling techniques.
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Object technology is not exclusive of the traditional approach. Rather, it 
subsumes it, much as relativity yields classical mechanics as a special case: an 
O-O program is made of classes, and its execution operates on objects, but the 
classes contain routines, and the objects contain fields on which programs may 
operate as they would with traditional variables. So both the static architecture 
of programs and the dynamic structure of computations cover the traditional 
concepts. We absolutely want the students to master the traditional techniques 
such as algorithmic reasoning, variables and assignment, control structures, 
pointer manipulation (whose coverage here includes algorithms to reverse a 
linked list, a tricky task seldom covered in introductory courses), procedures 
and recursion; they must also be able to build entire programs from scratch.

Eiffel and Design by Contract

We rely on Eiffel and the EiffelStudio environment which students can 
download for free from www.eiffel.com. Universities can also install this free 
version (and purchase support if desired). This choice directly supports the 
pedagogical concepts of this book:

• The Eiffel language is uncompromisingly object-oriented.

• Eiffel provides a strong basis to learn other programming languages such as 
Java, C#, C++ and Smalltalk (as demonstrated by appendices which 
introduce the essentials of the first three of these languages, in about 30 
pages each, by building on the concepts developed in the rest of the book).

• Eiffel is easy for beginners to learn. The concepts can be introduced 
progressively, without interference between basic constructs and those not 
yet studied.

• The EiffelStudio development environment uses a modern, intuitive GUI, 
with advanced facilities including sophisticated browsing, editing, a debugger 
with unique reverse execution capabilities, automatic documentation (HTML 
or otherwise), software metrics, and leading-edge automatic testing 
mechanisms. It produces architectural diagrams automatically from the code; 
the other way around, it lets a user draw diagrams from which the environment 
will produce the code, with round-trip capabilities. 

• EiffelStudio is available on many platforms including Windows, Linux, 
Solaris and Microsoft .NET.

• EiffelStudio includes a set of carefully written libraries, which support the 
reuse concepts of this book, and serve as the basis of the Traffic library. The 
most relevant are: EiffelBase, which by implementing the fundamental 
structures of computer science supports the study of algorithms and data 
structures in part III: EiffelTime for date and time; EiffelVision, for portable 
graphics; and EiffelMedia for multimedia and animation.

→ Appendices A (Java), 
B (C#), C (C++).

http://www.eiffel.com
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• Unlike tools designed exclusively for education, Eiffel is used commercially 
for mission-critical applications handling tens of billions of dollars in 
investments, managing health care systems, performing civil and military 
simulations, and tackling other problems across a broad range of application 
areas. This is in my opinion essential to effective teaching of programming; a 
tool that is really good should be good for professionals as well as for novices.

• The Eiffel language is specified by a standard of the International Standards 
Organization. For the teacher relying on a programming language, an 
international standard, especially an ISO standard, is a guarantee of 
sustainability and precise definition.

• Eiffel is not just a programming language but a method whose primary aim 
— beyond expressing algorithms for the computer — is to support thinking
about problems and their solutions. It enables us to teach a seamless 
approach that extends across the software lifecycle, from analysis and 
design to implementation and maintenance. This concept of seamless 
development, supported by the round-trip Diagram Tool of EiffelStudio, is 
in line with the modeling benefits of object technology.

To support these goals, Eiffel directly implements the concepts of Design by 
Contract, which were developed together with Eiffel and are closely tied to 
both the method and the language. By equipping classes with preconditions, 
postconditions and class invariants, we let students use a much more systematic 
approach than is currently the norm, and prepare them to become successful 
professional developers able to deliver bug-free systems.

One should also not underestimate the role of syntax, for beginners as well as 
for experienced programmers. Eiffel’s syntax — illustrated by the earlier short 
example — facilitates learning, enhances program readability, and fights mistakes:

• The language avoids cryptic symbols.

• Every reserved word is a simple English word, unabbreviated (INTEGER, 
not int).

• The equal sign =, rather than doing violence to hundreds of years of 
mathematical tradition, means the same as in math.

• Semicolons are not needed. In most of today’s languages, program texts are 
peppered with semicolons terminating declarations and instructions. Most 
of the time there is no reason for these pockmarks; even when not 
consciously noticed, they affect readability. Being required in some places 
and illegal in others, for reasons obscure to beginners, they can be a source 
of errors. In Eiffel the semicolon as separator is optional, regardless of 
program layout. This leads to a neat program appearance, as you may see by 
picking any example in the book.

For the text of the stan-
dard see tinyurl.com/ 
y5abdx or the ECMA 
version (same con-
tents, free access) at 
tinyurl.com/cq8gw.

← Class PREVIEW, 
page xxix.

http://tinyurl.com/y5abdx
http://tinyurl.com/y5abdx
http://tinyurl.com/cq8gw
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Encouraging such cleanliness in program texts should be part of the teacher’s 
pedagogical goals. Eiffel includes precise style rules, explained along the way 
to show students that good programming requires attention to both the 
high-level concepts of architecture and the low-level details of syntax and style: 
quality in the large and quality in the small.

More generally, a good language should let its users focus on the concepts 
rather than the notation. This is one of the goals of using Eiffel for teaching: that 
students should think about their problems, not about Eiffel

Why not Java?

Since courses in recent years have often used Java, or a Java variant such as C#, 
it is useful to explain why we do not follow this practice. Java is important for 
a computer scientist to know — indeed, as mentioned, the book provides an 
appendix describing Java, along with others on C#, C++ and C — but not 
suitable as a first teaching language. There is simply too much baggage to be 
learned before the student can start to think about the problems. This is apparent 
from the first program attempts; a Java “Hello World” reads

This is full of irrelevant concepts, each an obstacle to learning. Why “public”, 
“static”, “void”? (Sure, I’ll make my program public if you insist, but do you 
mean my efforts are void of any value?) These keywords have nothing to do with 
the purpose of the program, and the student won’t begin to understand what they 
mean for a few months at least, yet he or she must include them, like magic 
incantations, for their programs to work. For the teacher this means repeatedly 
engaging in injunctions to use certain constructions without understanding what 
they mean. As noted earlier, this “You’ll understand when you grow up” style is 
not good pedagogy. Eiffel protects us from it: we can explain every programming 
language construct that we use, right from the first example.

The object-oriented nature of Eiffel and the simplicity of the language play 
a role. It is ironic that every Java program, starting with the simplest example as 
shown above, uses a static function as its main program, departing from the 
object-oriented style of programming. There are of course people who do not 
like the idea of using O-O for the first course; but if you do choose objects, you 
should be consistent. At some point the students will realize that this 
fundamental scheme — the one you told them to use, from the first example to 
every subsequent one — is not object-oriented after all; how can you answer 
their inevitable question with a straight face?

class First {
    public static void main(String args[])
    { System.out.println("Hello World!"); } }
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Syntax, as noted, matters. In this first example the student must master 
strange symbol accumulations, like the final “"); } }”, disconcerting to the eye 
and with no obvious role. In this accumulation the precise order of the symbols 
is essential, but is hard to explain and to remember. (Why a semicolon between 
a closing parenthesis and a brace? Is there a space after that semicolon, and if so 
how important is it?) Such aspects are troubling to beginners; inevitably, much 
time and effort are consumed learning them and recovering from trivial 
mistakes causing mysterious results, just when the student should be 
concentrating on the concepts of programming.

Another source of confusion is the use of “=” for assignment, inherited from 
Fortran through C and hard to justify in the twenty-first century. How many 
students starting with Java have wondered what value a must have for a = a + 1
to make sense, and, as noted by Wirth [15], why a = b does not mean the same 
as b = a   ?

Inconsistencies are troubling: why, along with full words like “static”, use 
abbreviations such as “args” and “println”? Students will retain from that first 
exposure to programming that it is not necessary to be consistent, and that 
saving keystrokes is more important than choosing clear names. (In the basic 
Eiffel library the operation to go to the next line is called put_new_line.) If 
indeed we later introduce methodological advice urging students to choose clear 
and consistent names, we can hardly expect them to take us seriously. “Do as I 
say, not as I do” is another dubious pedagogical technique.

To cite another example: when describing the need for a mechanism for 
treating operations as objects, like Eiffel’s agents or the closures of other 
languages, I had to explain how one addresses the issue in a language such as 
Java that does not have these mechanisms. Since I used iterators as one of the 
motivating examples, I was at first happy to find that the original Sun page 
describing Java’s “inner classes” also had code for an iterator design, which it 
would have been nice to use as a model. But then it includes declarations such as

I can perhaps try to justify this to seasoned programmers, but there is no way I can 
explain it to beginning students — and I admire anyone who can. Why does 
StepThrough appear three times? Does it denote the same thing each time? Is the 
change of letter case (StepThrough vs stepThrough) relevant? What does the 
whole thing mean anyway? Very quickly the introductory programming course 

public StepThrough stepThrough() {
                  return new StepThrough();
          } 

→ Chapter 17.

See tinyurl.com/c4oprq 
(archive of java.sun. 
com/docs/ books/tuto-
rial/java/ javaOO/ 
innerclasses.html, Oct. 
2007; the page now uses 
a different example).

http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://tinyurl.com/c4oprq
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turns into painful exegesis of the programming language, with little time left for 
real concepts. In Alan Perlis’s words, “A programming language is low-level when 
its programs require attention to the irrelevant”.

Also contributing to the difficulties of using Java in an introductory course 
are the liberties that the language takes with object-oriented principles. 
For example:

• If x denotes an object and a one of the attributes of the corresponding class, 
you may by default write the assignment x.a = v to assign a new value to 
the a field of the object. This violates information hiding and other design 
principles. To rule it out, you must shadow every attribute with a “getter” 
function. For the teacher, the choice is between forcing students early on to 
add such noise to their programs, or let them acquire bad design habits 
which are then hard to unlearn.

• Java strictly distinguishes fully abstract modules, called interfaces, from 
fully implemented ones — classes. One of the benefits of the class 
mechanism, available as early as Simula 67, is to offer a full range of 
possibilities between these extremes. This idea is at the core of teaching the 
object-oriented method, in particular teaching design: you can express a 
notion, when you first identify it, as a fully deferred (abstract) class; then 
you refine it progressively, through inheritance, into a fully effective class. 
Classes at intermediate levels in this process are partially deferred and 
partially effective. Java does not let you use this approach if you may need 
to combine two or more abstractions through inheritance: all but at most one 
of the combined modules must be interfaces.

There are many more examples of such influences of Java on the teaching 
process; a new Eiffel user expressed a typical reaction by writing on a mailing 
list that “I have written a lot of C++ and Java; all my brain power went on 
learning loads of nerdy computer stuff. With Eiffel I do not notice the 
programming and spend my time thinking about the problem.”

A reason often invoked for using Java or C++ in introductory programming 
is the market demand for programmers in these languages. This is a valid 
concern, but it applies to the computer science curriculum as a whole, not to the 
first course. Programming at the level required of a CS graduate today is hard 
enough; we should use the best pedagogical tools. If market demand had been 
the determinant, we would never in the past have used Pascal (for many years 
the introductory language of choice), even less Scheme. Following the trends 
reflected in the latest ads for programmers we would in turn have imposed 
Fortran, Cobol, PL/I, Visual Basic, maybe C — and trained programmers who, 
a few years after graduation, would have found their skills obsolete when the 
great wheel of fashion turned. Our duty is to train problem-solvers who can 
quickly adapt to the evolutions of our discipline.

Epigram #8, available 
at www-pu.informa-
tik.uni-tuebin-
gen.de/users/klaeren/
epigrams.html.

http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
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We should not let short-term market considerations damage pedagogical 
principles. In other words: if you think Java or C++ are ideal teaching tools, use 
them; you probably will not like this book very much anyway. But if you agree 
with its approach, do not let yourself be scared that some student or parent will 
complain that you use an “academic” approach. Explain to them that you are 
teaching programming in the best way you know, that someone who understands 
programming will retain that skill for life, and that any half-decent software 
engineer can pick up a new programming language at breakfast — in case he or 
she has not already picked it up from other courses of your curriculum. As to the 
“academic” qualification (assuming that in a university context, it is meant as 
derogatory!), point them to eiffel.com and its long list of mission-critical systems 
in Eiffel in the financial industry, aerospace, defense, networking, 
computer-aided design, health care and other areas, successfully deployed by 
major companies, often after attempts in other languages had failed.

Java, C#, C++ and C are, for the next few years, an important part of any 
software engineer’s baggage; it is important, as reflected by this book’s four 
language-specific appendices, to ensure that the students know them. This goal 
is, however, unrelated to the question of what techniques to use in the 
introductory course. Students will most likely be exposed to these languages at 
some point; it would be a rare curriculum these days where no course uses at 
least one of them. In any case, no introductory course that I know covers all of 
them, so students need to learn more regardless of the initial teaching language.

Programming languages and the programming culture associated with each 
of them are interesting objects of study. Our group at ETH, which teaches 
introductory programming in Eiffel, has introduced courses for the third year 
and beyond, devoted to specific languages: “Java in Depth”, “C# in Depth” etc. 

Once you understand the concepts of programming, you are well prepared 
to master diverse languages. Eiffel is a benefit here too: as many people have 
noted, having learned Eiffel and its object model helps you become a better C++ 
or Java programmer. 

As a potential employer in both academia and industry I see dozens of CVs every 
month. They all boast of the same skills, including C++ and Java. Other than as 
checkboxes to be ticked, this will not impress anyone. What recruiters do watch for 
is any skill that sets out an applicant from the hordes of others with similar 
backgrounds. An example of such a distinctive advantage is that the applicant 
knows a fully object-oriented approach with support for software engineering, as 
evidenced by a curriculum using Eiffel and Design by Contract. It is possible to 
survive a C++-based curriculum without ever understanding O-O concepts in any 
depth; with Eiffel that is less likely. Competent employers know that what counts, 
beyond immediate skills, is depth of understanding of software issues and aptitude 
for long-term professional development. All the effort deployed through this book 
and its use of Eiffel is directed at these goals.

It may be appropriate here to cite Alan Perlis again: A language that doesn’t 
affect the way you think about programming is not worth knowing.

In our surveys [13], 
about 50% of students 
have used Java or C++ 
before they reach the 
introductory course.

Epigram #19.

http://eiffel.com
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HOW FORMAL?

One of the benefits of the Design by Contract approach is to expose the 
students to a gentle dose of “formal” (mathematics-based) methods of 
software development.

The software world needs, among other advances, more use of formal 
methods. Any serious software curriculum should devote at least one course 
entirely to mathematics-based software development, based on a mathematical 
specification language. In addition — although not as a substitute for such a 
course — the ideas should influence the entire software curriculum, even 
though as discussed below it is not desirable today to subject beginners to a fully 
formal approach. The challenge is not only to include an introduction to formal 
reasoning along with practical skills, but to present the two aspects as 
complementary, closely related, and both indispensable. The techniques of 
Design by Contract, tightly woven into the fabric of object-oriented software 
architecture, permit this.

Teaching Design by Contract awakens students to the idea of 
mathematics-based software development. Almost from the first examples of 
interface specifications, routines possess preconditions and postconditions, and 
classes possess invariants. These concepts are introduced in the proper context, 
treated — as they should, although many programmers still fear them, and most 
programming languages offer no support for contracts — as the normal, obvious 
way to reason about programs. Without intimidating students with a heavy-duty 
formal approach, we open the way for the introduction of formal methods, which 
they will fully appreciate when they have acquired more experience with 
programming.

In no way does the use of a mathematical basis imply a stiff or intimidating 
manner. Some formality in the concepts goes well with a practical, hands-on 
approach. For example the text introduces loops as an approximation
mechanism, to compute a solution on successively larger subsets of the data; in 
this view the notion of loop invariant comes naturally, at the very beginning of 
the discussion of loops, as a key property stating the approximation obtained at 
every stage.

This emphasis on practicality distinguishes Design by Contract from the 
fully formal approaches used in some introductory courses, whose teachers hold 
that students should first learn programming as a mathematical discipline. 
Sometimes they go so far as to keep them away from the computer for a 
semester or a full year. The risk of such dogmatism is that it may produce the 
reverse of its intended effect.

→ In chapter 4.
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Students, in particular those who have programmed before, realize that they 
can produce a program — not a perfect program, but a program — without a 
heavy mathematical apparatus; if you tell them that it’s not possible they will 
just disconnect: they may from then on reject any formal technique as irrelevant, 
including both simple ideas which can help them now and more advanced ones 
later. As Leslie Lamport — not someone to be suspected of underestimating the 
value of formal methods — points out [6]:

[In American universities] there is a complete separation between 
mathematics and engineering. I know of one highly regarded 
American university in which students in their first programming 
course must prove the correctness of every tiny program they write. In 
their second programming course, mathematics is completely 
forgotten and they just learn how to write C programs. There is no 
attempt to apply what they learned in the first course to the writing of 
real programs.

Our experience confirms this. First-year students, who react well to Design by 
Contract, are not ready for a fully formal approach. To develop a real 
appreciation for its benefits you must have encountered the difficulties of 
industrial software development. On the other hand, it also does not work to let 
students develop a totally informal approach first and, years later, suddenly 
reveal that there is more to programming than hacking. The appropriate 
technique, I believe, is incremental: introduce Design by Contract techniques 
right from the start, with the associated idea that programming is based on a 
mathematical style of reasoning, but without overwhelming students with 
concepts beyond their reach; let them master the practice of software 
development on the basis of this moderately formal approach; later in the 
curriculum, bring in courses on such topics as formal development and 
programming language semantics. This cycle can be repeated, as theory and 
practice reinforce each other.

Such an approach helps turn out students for whom correctness concerns are 
not an academic chimera but a natural, ever-present component of the software 
construction process.

In the same spirit, the discussion of high-level functional objects (agents, chapter 
17, and their application to event-driven programming in chapter 18) provides the 
opportunity of a simple introduction to lambda calculus, including currying — 
mathematical topics that are seldom broached in introductory courses but have 
applications throughout the study of programming.
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OTHER APPROACHES

Looking around at university curricula, talking to teachers and examining 
textbooks leads to the observation that four main approaches exist today for 
introductory programming:

1 Language-focused.

2 Functional (in the sense of functional programming).

3 Formal.

4 Structured, Pascal or Ada-style.

It is important to understand the benefits of these various styles — indeed we 
retain something from each of them — and their limitations.

The first approach is probably the most common nowadays. It focuses on a 
particular programming language, often Java or C++. This has the advantage of 
practicality, and of easily produced exercises (subject to the Google-and-Paste 
risk), but gives too much weight to the study of the chosen language at the 
expense of fundamental conceptual skills. Relying on Eiffel helps us teach the 
concepts, not the specifics of a language.

The second approach is illustrated in particular by the famous MIT course 
based on the Scheme functional programming language [1], which has set the 
standard for ambitious curricula; there also have been attempts using Haskell, 
ML or OCaml. This method is strong on teaching the logical reasoning skills 
essential to a programmer. We strive to retain these benefits, as well as the 
relationship to mathematics, present here through logic and Design by Contract. 
But in my opinion object technology provides students with a better grasp of the 
issues of program construction. Not only is an O-O approach in line with the 
practices of the modern software industry, which has shown little interest in 
functional programming; more importantly for our pedagogical goals, it 
emphasizes system building skills and software architecture, which should be at 
the center of computer science education.

While, as noted, the curriculum should not be a slave to the dominant 
technologies just because they are dominant, using techniques too far removed 
from practice subjects us to the previously mentioned risk of disconnecting from 
the students, especially the most advanced ones, if they see no connection 
between what they are being taught and what their incipient knowledge of the 
discipline tells them. (Alan Perlis put this less diplomatically: Purely 
applicative languages are poorly applicable.)

Epigram #108.
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I would argue further that the operational, imperative aspects of software 
development, downplayed by functional programming, are not just an 
implementation nuisance but a fundamental component of the discipline of 
programming, without which many of the most difficult issues disappear. If this 
view is correct, we are not particularly helping students by protecting them from 
these aspects at the beginning of their education, presumably abandoning them 
to their own resources when they encounter them later. (Put in a different way: 
functional programming seems to require monads these days and, given a 
choice, I’d rather teach assignment than category theory.)

It is useful to point out that O-O programming is as mathematically respectable — 
through the theory of abstract data types on which it rests and, in Eiffel, the reliance 
on contracts — and as full of intellectual challenges as any other approach. 
Recursion, one of the most fascinating tools of functional programming, receives 
extensive coverage in the present book.

Some of the comments on functional programming also apply to the third 
approach, reliance on formal methods. As discussed above, a fully formal 
approach is, at the introductory programming level, premature. The practical 
effect may be to convince students that academic computer science has nothing 
to do with the practice of software engineering, and lead them to a jaded, 
method-less approach to programming.

The fourth commonly used approach, pioneered at ETH, draws its roots in 
the structured programming work of the seventies, and is still widespread. It 
emphasizes program structure and systematic development, often top-down. 
The supporting programming language is typically Pascal, or one of its 
successors such as Modula-2, Oberon or Ada. The approach of this book is heir 
to that tradition, with object technology viewed as a natural extension of 
structured programming, and a focus on programming-in-the-large to meet the 
challenges of programming in the new century.

TOPICS COVERED

The book is divided into five parts.

Part I introduces the basics. It defines the building blocks of programs, from 
objects and classes to interfaces, control structures and assignment. It puts a 
particular emphasis on the notion of contract, teaching students to rely on 
abstract yet precise descriptions of the modules they use, and to apply the same 
care to defining the interface of the modules they will produce. A chapter on 
“Just Enough Logic” introduces the key elements of propositional calculus and 
predicate calculus, both essential for the rest of the discussion. Back to 
programming, subsequent chapters deal with object creation and the object 

→ Chapter 14.

→ Chapter 5.
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structure; they emphasize the modeling power of objects and the need for our 
object models to reflect the structure of the external systems being modeled. 
Assignment is introduced, together with references and the tricky issues of 
working with linked structures, only after program structuring concepts.

Part II, entitled “How things work”, presents the internal perspective. It 
starts with the basics of computer organization (covered from the viewpoint of 
a programmer and including essential concepts only), syntax description 
methods (BNF and its applications), programming languages and programming 
tools. The two chapters that follow cover core topics: syntax and how to 
describe it, including BNF and an introduction to the theory of finite automata; 
and an overview of programming languages, programming tools and software 
development environments.

Part III examines fundamental data structure and algorithm techniques. It is 
made of three chapters: 

• Fundamental data structures — not a substitute for the “Data Structures and 
Algorithms” course which often follows the introductory course, but 
introducing genericity, algorithm complexity, and several important data 
structures such as arrays, lists of various kinds and hash tables.

• Recursion, including binary trees (in particular binary search trees), an 
introduction to fixpoint interpretations, and a presentation of techniques for 
implementing recursion.

• A detailed exploration of one interesting algorithm family, topological sort, 
chosen for its many instructive properties affecting both algorithm design 
and software engineering. The discussion covers the mathematical 
background, the progressive development of the algorithm for efficient 
execution, and the engineering of the API for convenient practical use.

Part IV goes into the depth of object-oriented techniques. Its first chapter covers 
inheritance, addressing many details seldom addressed in introductory courses, 
such as the Visitor pattern (which complements basic inheritance mechanisms 
for the case of adding operations to existing types). The next chapter addresses 
a technique that is increasingly accepted as a required part of modern 
object-oriented frameworks: function objects, also known as closures, delegates 
and agents (the term used here). It includes an introduction to lambda calculus. 
The final chapter in this part applies agent techniques to an important style of 
programming: event-driven computation. This is the opportunity to review 
another design pattern, Observer, and analyze its limitations.

Part V adds the final dimension, beyond mere programming, by introducing 
concepts of software engineering for large, long-term projects.

Appendices, already mentioned, provide an introduction to programming 
languages with which students should be familiar: Java, C#, C++ — a bridge 
between the C and O-O worlds — and C itself.
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Note to instructors: what to cover?

To provide flexibility for the instructor, the book has more material than will typically be 
covered in a one-semester course. The following is my view of what constitutes essential 
material and what can be viewed as optional. It is based on my experience and will naturally 
need to be adapted to every course’s specifics and every instructor’s taste.

• Chapters 1 to 4 should probably be covered in their entirety, as they introduce 
fundamental concepts.

• Chapter 5 on logic introduces fundamental concepts. If students are also taking a logic 
course the material can be covered briefly, with a focus on relating computer scientists’ 
and logicians’ notations and conventions. I find it useful to insist on the properties of 
implication, initially counter-intuitive to many students (“Getting a practical feeling for 
implication”,  page 86); also, the course should discuss semistrict boolean operators
(5.3), which logicians usually do not cover.

• Chapter 6 on object creation is necessary for the rest of the presentation.

• So is chapter 7 on control structures up to 7.6; the remaining sections present details of 
the low-level branching structure and some language variants. You should mention 
structured programming (7.8).

• Chapter 8 on routines should in my view be included in its entirety; in particular it is 
useful to provide a simple proof of the undecidability of the Halting Problem.

• In chapter 9, sections up to 9.5 cover fundamental concepts. 9.6, discussing the diffi-
culty of programming with references, with the example of list reversal, is important 
but more advanced. The last subsection, on dynamic aliasing, is optional material.

• How much to cover chapter 10 on computers depends on what students are learning 
elsewhere about computer architecture. The chapter is not deep but provides basic points 
of reference for programmers.

• Chapter 11 on syntax is important material but not absolutely required for the rest of the 
book. I suggest covering at least the sections up to 11.4 (if only because students need 
to understand the concept of abstract syntax). If most students will not take a course on 
language and compilers, they will benefit from the basic concepts in subsequent sections.

• Chapters 12 on programming languages and tools is background material; I do not cover 
it explicitly in my class but provide it as a resource.

• Chapter 13 introduces fundamental concepts on data structures, genericity, static typing 
and algorithm complexity. It is possible to skip 13.8 (list variants) and 13.13 (iteration).
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• Chapter 14 discusses recursion in some depth — more depth than is customary in an 
introductory presentation, because I feel it is useful to remove the potential mystery of 
recursive algorithms and show the importance of recursion beyond algorithms: recursive 
definitions, recursive data structures, recursive syntax productions and recursive proofs. 
The core material is the beginning of the chapter: 14.1 to 14.4, including the discussion 
of binary trees. The other sections may be viewed as supplementary; backtracking and 
alpha-beta (14.5) are a useful illustration of the applications of recursion. If the course 
is strongly implementation-oriented, consider 14.9 (implementing recursion); if you 
think that contracts are important, direct the students to 14.8 (contracts and recursion).

• Chapter 15 is a detailed discussion of an important application, topological sort. It 
introduces no new programming construct and so you can skip it, or replace it with one 
of your own examples, without damage. I cover it in some depth because it describes the 
complete progression from mathematics to algorithms to choice of optimal data 
structures to proper engineering of the API.

• In chapter 16, on inheritance, the essential sections are 16.1 to 16.7, plus 16.9 on the role 
of contracts, which illuminates the whole concept of inheritance. It is also useful to 
explain the connection to genericity in 16.12. The end of the chapter, in particular 16.14
about the Visitor pattern, is more advanced material that most courses probably will not 
have the time to cover, but which can be given as a reading assignment or as preparation 
for later courses.

• Chapter 17 on agents (closures, delegates) again goes beyond the usual scope of 
introductory courses. This is so important to modern programming that in my opinion it 
should be covered at least up to 17.4 (including illustrations through numerical 
programming and iteration). I usually do not have the time to cover 17.6, a gentle 
introduction to lambda calculus, but it should interest the more mathematically-oriented 
students, if only as extra reading material.

• If you do cover agents, you should then reap the benefits by covering the application to 
event-driven programming and especially GUI design (of interest to many students) in 
chapter 18. This is a good opportunity to learn an important pattern, Observer. Our course 
covers this and the previous chapter together, in four 45-minute lectures.

• Chapter 19 (introduction to software engineering) is not critical to an introductory 
course and I have not had time so far to cover it (but we do have “software architecture” 
and “software engineering” courses later in the curriculum). It is appropriate for an 
audience that needs to be exposed to the issues of production-quality software 
development in industry.

• The appendices are background material and I do not cover them, although some 
instructors might want to devote some time to a language such as Java or C++ (we do 
this, as noted, in specialized courses focusing on these languages).

A final note: while the course and the book were developed together, I always make a point 
of devoting a couple of lectures in the course to a topic not covered in the book — to 
introduce some spontaneity and avoid limiting the course to pre-packaged material. I like for 
example to present the algorithm for Levenshtein distance (edit distance between two 
strings), as it provides an outstanding example of the usefulness of loop invariants: without 
the invariant the algorithm looks like magic, with the introduction of the invariant it becomes 
limpid. Some of the extra material is available from the book site, touch.ethz.ch. (In the same 
vein, I have found that the textbook is sufficiently detailed to allow me to use a “Socratic” 
style for a couple of lectures in the semester: I ask the students to read a chapter in advance; 
then I do not cover the material sequentially in class but just come and wait for questions. 
Maybe this can work for other instructors as well.)

touch.ethz.ch
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