
Touch of Class

Bertrand Meyer

Touch of Class

 Learning to Program Well with Objects
and Contracts

ISBN 978-3- 40-92144-8 ISBN 978-3-540-92145-5 (eBook)
DOI 10.1007/978-3-5 4 -92145 -5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number:

© Springer-Verlag Berlin Heidelberg 2009, Corrected printing 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Bertrand Meyer
ETH Zürich
Department of Computer Science

5
0

Zürich, Switzerland

2013933995

Short contents

The full table of contents appears on page xlix.

Community resources vii
Dedication ix
Prefaces xi
Student_preface xiii
Instructor_preface xxiii
Note to instructors: what to cover? xlvii
Contents xlix

PART I: BASICS 1

1 The industry of pure ideas 3
2 Dealing with objects 15
3 Program structure basics 35
4 The interface of a class 47
5 Just Enough Logic 71
6 Creating objects and executing systems107
7 Control structures 139
8 Routines, functional abstraction and

information hiding 211
9 Variables, assignment and references 227

PART II: HOW THINGS WORK 271

10 Just enough hardware 273
11 Describing syntax 295
12 Programming languages and tools 321

PART III: ALGORITHMS AND
DATA STRUCTURES 361

13 Fundamental data structures,
genericity, and algorithm complexity 363

14 Recursion and trees 435

15 Devising and engineering an algorithm:
Topological Sort 505

PART IV: OBJECT-ORIENTED
TECHNIQUES 549

16 Inheritance 551

17 Operations as objects: agents and
lambda calculus 619

18 Event-driven design 663

PART V: TOWARDS SOFTWARE
ENGINEERING 699

19 Introduction to software engineering 701

PART VI: APPENDICES 745

A An introduction to Java
(from material by Marco Piccioni) 747

B An introduction to C#
(from material by Benjamin Morandi) 775

C An introduction to C++
(from material by Nadia Polikarpova) 805

D From C++ to C 839

E Using the EiffelStudio environment 843

Picture credits 847

Index 849

Community resources

Touch of Class rests (at the time of publication) on six years of teaching the “Introduction
to Programming” course at ETH Zurich, taken by all entering computer science students.
In connection with the course and the book we have developed a considerable amount of
pedagogical material. Instructors are welcome to use this material for their own teaching.
On the Web page for both this book and the course

http://touch.ethz.ch

you will find links to:
• The full set of our course slides (PowerPoint + PDF) in its latest version.
• Streamable and downloadable video recordings of our lectures.
• Supplementary material.
• Exercises.
• Slides for exercise sessions (tutorials).
• Mailing list and Wiki page for instructors using Touch of Class as their textbook.
• Traffic software for download (Windows, Linux, ...)
• Published articles and technical reports on our pedagogical work in connection with

the course, and our other work on computer science education including the
TrucStudio course development framework.

• Information about courses using the textbook in other universities.
• Errata.
• An instructor’s corner (requiring registration), for instructors of courses having

adopted the book, with suggestions for homeworks and exams and some solutions.
All this material is freely available for academic use in connection with the present
textbook (see license terms on the site). For other uses please contact us.
Most of the material, in particular the course slides and video recordings, is in English.
German versions are available for some of the exercise session slides. We expect to add
material in other languages as it becomes available; if you translate slides or other
elements into another language, we will be happy to include the translations.
More generally we welcome all community contributions.

http://touch.ethz.ch

Dedication

This book is dedicated to two pioneers of computer science, as thanks for their
unending influence and in recognition of their many brilliant insights:

C.A.R. Hoare, on the occasion of his 75th birthday.
Niklaus Wirth, with special gratitude for his development of computing
science (informatics) at ETH.

Prefaces

note
description:"[

This book has two prefaces, one for instructors and one for students, as stated
here through a contrived but correct use of its own programming notation.

]"
class PREFACING inherit

KIND_OF_READER
create

choose
feature -- Initialization

choose
-- Get the preface that’s right for you.

do
if is_student then

student_preface.read
elseif is_instructor then

instructor_preface.read
else

pick_one_or_both
end

check
-- You learn about dynamic binding

note
why: "You will express this more elegantly"

end
end

end

Student_preface * ∗The preface for inst-
ructors is on page
xxiii.

Programming is fun. Where else can you spend your days devising machines of
your own imagination, build them without ever touching a hammer or staining
your clothes, make them run as by magic, and get paid — not too bad, thanks
for asking — at the end of the month?

Programming is tough. Where else do products from the most prestigious
companies fail even in ordinary use? Where else does one find so many users
complaining so loudly? Where else do engineers routinely work for hours or
days trying to understand why something that should work doesn’t?

Get ready for the mastery of programming and its professional form,
software engineering; get ready for both the toughness and the fun.

SOFTWARE EVERYWHERE

By going into computing science you have chosen one of the most exciting and
fast-moving topics in science and technology. Fifty years ago it was not even
recognized as a scientific subject; today hardly a university in the world is
without a CS department. Thousands of books, journals, magazines and
conferences cover the field. The global revenues of its industry — called
information technology or IT — are in the trillions. No other field, in the history
of technology, has undergone growth of either such magnitude or such speed.

And we have made a difference. Without software there would be no
large-scale plane travel, and in fact no modern planes (or modern cars, or
high-speed trains) since their design requires sophisticated “Computer-Aided
Design” software. To pay its workers, any large corporation would employ
hundreds of people just to write the paychecks. A phone would still be a device
tied to the wall by a cable. After taking a picture, you still could not see the result
until the roll of film came back from processing. There would be no video
games, no camcorders, no iPods and no iPhones, no Skype, no GPS to guide you
to your destination even when there is no one around to ask. To produce a report
you would still hand-write a draft, give it to a typist, and go through rounds of

STUDENT_PREFACExiv

correction requests. A sudden itch to know the name of the captain in The Grand
Illusion, or the population of Cape Town, or the author of a familiar citation,
would require (rather than typing a couple of search words and getting the
answer in a blink) a trip to the library. The list goes on; at the heart of countless
practices that now pervade our daily life lie programs — increasingly
sophisticated programs.

All this does not happen by itself. While computers may have become a
commodity, programs — without which computers would be useless —
definitely are not. Programming, the task of constructing new programs or
improving existing ones, is a challenging intellectual pursuit that requires
programmers possessing creativity and experience. Through this book you will
become familiar with the world of programs and programming, with a view to
becoming a professional in the field.

CASUAL AND PROFESSIONAL SOFTWARE DEVELOPMENT

Although more and more people are acquiring basic computing proficiency,
being able to program at a professional level is another matter, and is what a
curriculum in computing science will bring you.

For comparison, consider mathematics. A few centuries ago, just being able
to add and subtract 5-digit numbers required a university education, and in
return provided qualifications for such good jobs as accountant. Nowadays
these skills are taught in grade school; if you want to become an engineer or a
physicist, or just a stock trader, you need to study more advanced mathematical
topics, such as calculus, in a university. The boundary between basic training
and university-level education has moved up.

Computing is following the same evolution, only much faster — the scale
is in decades, not centuries. Not so long ago, being able somehow to program a
computer was enough to land a job. Do not expect this today; an employer will
not be much more impressed if your résumé states “I have written programs”
than if you say you can add numbers.

What increasingly counts is the difference between having some basic
programming experience and being a software engineer. The former skill will
soon be available to anyone who has gone through a basic education; but the
latter is a professional qualification, just like advanced mathematics. Studying
this book is a step towards becoming a computing professional.

PRIOR EXPERIENCE — OR NOT xv

Factors that distinguish professional software development from casual
programming include size, duration and change. In professional software
development, you may become involved in programs that reach into the
millions of lines of program text, must remain in operation for years or decades,
and will undergo many changes and extensions in response to new
circumstances. Many an issue that seems trivial or irrelevant when you are
working on a medium-size program, meant only to solve a problem of
immediate interest, becomes critical when you move to the scale of professional
development.

With this book I’ll try to prepare you for the real world of software, where
systems are complex, solve serious problems (often affecting human life or
property), stay around for a long time, and must lend themselves gracefully to
requests for change.

PRIOR EXPERIENCE — OR NOT

This book does not assume any prior programming knowledge.

If you did program before, that experience will help you master the concepts
faster. You will recognize some of the ideas, but you should also expect to be
surprised at times, since the professional study of any topic is different from its
use by the general public. Once in a while, for example, you may find that I
belabor a seemingly simple matter. If so, you will (I think) discover after a while
that the topic is not as simple as it seems at first, just as addition is more
challenging to the mathematician than to the accountant. While you must be
prepared to question some of your previous practices if they do not match the
professional software engineering principles developed here, you can and
should take advantage of everything you know. Learning to program well takes
a lot of effort: every bit — every angle from which you can approach the
problem — helps. In particular, the discussion relies, as explained below, on a
supporting software system, Traffic. If you are familiar with programming and
some programming languages, you will be able to discover some of Traffic by
yourself, perhaps ahead of the official assignments. Do not hesitate to do so: one
learns programming in part by reading existing programs for inspiration and
imitation. You may have to do some guessing for elements of Traffic that rely
on techniques and language constructs you have not formally studied yet, but
this is where your experience will help you move faster.

STUDENT_PREFACExvi

On the other hand, if you have not done any programming, you’re OK too.
You might progress more slowly at the beginning, but should just study all the
material carefully and do all the exercises. In particular, even though this book
includes little actual mathematics, you will feel more comfortable if you have a
mathematical mindset and the practice of logical reasoning. This is just as
beneficial as programming experience, and will compensate for any handicap
you feel relative to those fellow students in the back row who look like they
typed their first program before they lost their baby teeth.

Programming, like the rest of computing science, is at the confluence of
engineering and science. Success requires both a hands-on attitude (the
“hacker” side, in the positive sense of the word), useful in technology-oriented
work, and an ability to perform abstract, logical reasoning, required in
mathematics and other sciences. Experience with programming helps you with
the first goal; a logical mind helps you with the second. Wherever your strength
lies, take advantage of it, and use this book to make up for any initial deficiency
on the other side.

MODERN SOFTWARE TECHNOLOGY

Becoming a software professional requires more than one course or one book:
it takes a multi-year curriculum in which — in addition to mathematical
foundations such as logic and statistics — you will learn about software
engineering, theory of computation, data structures, algorithms, operating
systems, artificial intelligence, databases, hardware, networking, project
management, software metrics, numerical computation, graphics and many
other topics. But to prepare for these other computer science courses it is
essential to use the best of what is known in software technology.

In recent years two major ideas, holding the potential for producing
software of much better quality than was available before, have made their way
into the software field: object-oriented software construction and formal
methods. Both of these ideas, but especially the first, can be used to make the
introductory study of computing more exciting and more profitable. Along with
other concepts from modern software technology, they play a major role in this
book. Let’s have a quick advance look at both.

OBJECT-ORIENTED SOFTWARE CONSTRUCTION xvii

OBJECT-ORIENTED SOFTWARE CONSTRUCTION

Object-oriented (“O-O”) software construction follows from the realization that
proper systems engineering must rely on a large inventory of high-quality
reusable components, as in the electronic or construction industries. The O-O
approach defines what form these components should have: each of them must
be based on a certain type of objects. The term “object”, which gives its name
to the method, does not just refer to objects of the application domain, such as
circles or polygons in a graphics program, but also to objects that are purely
internal to the software, such as a list. If you do not quite see what this all means,
that’s normal; I hope that if you read this preface again in a few months it will
all be crystal-clear!

Object technology (the shorter name for object-oriented software
construction) is quickly changing the software industry. Becoming familiar with
it from the very beginning of your computing studies is an excellent insurance
policy against technical obsolescence.

FORMAL METHODS

Formal methods are the application of systematic reasoning techniques, based
on mathematical logic, to the construction of reliable software. Reliability, or
rather the lack of it, is a vexing problem in software; errors, or the fear of error,
are the programmer’s constant companion. Anyone who uses computers has
some anecdote about bugs.

Formal methods can help improve this situation. Learning formal methods
in their full extent requires more knowledge than is available at the beginning
of a university education. But the approach used in this book shows a significant
influence of formal methods, in particular through the idea of Design by
Contract, which considers the construction of software systems as the
implementation of a number of individual contractual relations between
modules, each characterized by a precise specification of obligations and
benefits. I hope that you will understand the importance of these ideas and
remember them for the rest of your career. In industry, everyone knows the
difference between a programmer who just “hacks code” and one who is able to
produce correct, robust and durable software elements.

A previous book
(“Object-Oriented
Software Construc-
tion”, 2nd edition,
Prentice Hall,1997)
covers object technol-
ogy in depth and at a
more advanced level.

STUDENT_PREFACExviii

LEARNING BY DOING

This book is not a theoretical presentation; it assumes that as you go along you
practice what you learn on a computing system. The associated Web site
provides links to the necessary software, in versions for Windows, Linux and
other platforms, which you can download. Your school may also have the
equivalent facilities available on its computers. In fact, the text prompts you, in
some cases, to do the practical work with the software before learning the
theoretical concepts.

The system that you will use for this course is an advanced object-oriented
environment: EiffelStudio, an implementation of the Eiffel analysis, design and
programming language. Eiffel is a simple, modern language, used worldwide in
large, mission-critical industrial projects (banking and finance, health care,
networking, aerospace etc.) as well as for teaching and research in universities.
The EiffelStudio version that you will use is exactly the same as the professional
version, with the same graphical development environment and fundamental
reusable components such as the EiffelBase, EiffelVision and EiffelMedia
libraries. Your school may also have an academic license providing for
maintenance and support.

Appendices present an introduction to four other languages widely used in
industry: Java, C#, C++ and C. Any good software engineer must be fluent in
several programming languages, including at least some of these; learning Eiffel
will be a plus on your résumé (a mark of professionalism) and will help you
master other object-oriented languages.

FROM THE CONSUMER TO THE PRODUCER

Because from day one of the course you will have the whole power of
EiffelStudio at your fingertips, you will be able to skip many of the “baby”
exercises that have traditionally been used to learn programming. The approach
of this book is based on the observation that to learn a technique or a trade it is
best to start by looking at the example of excellent work produced by
professionals, and taking advantage of it by (in order) using that work,
understanding its internal construction, extending it, improving it — and
starting to build your own. This is the time-honored method of apprenticeship,
which places newcomers under the guidance of experts.

touch.ethz.ch.

http://touch.ethz.ch

ABSTRACTION xix

The expertise is represented here by software, more specifically library
classes: software elements from the Traffic library, specially developed for this
book. As you write your first software examples, you will use these classes to
produce results which are already impressive even though you have not had
much to write; you will simply be relying on the mechanisms defined by the
classes, acting, through your own software, as a consumer of existing
components. Then, as someone who knows how to drive but is studying to
become an automobile engineer, you will be encouraged to lift the hood and see
how these classes are made, so that you can later on write extensions to the
classes, improve them perhaps, and write your own classes.

The Traffic library, as its name suggests, provides mechanisms for dealing
with traffic in a city — cars, pedestrians, metros, trams, taxis … — with
graphical visualization, simulations, route computation, route animation etc. It
is a rich reservoir of applications and extensions: you can build on it to write
video games, solve optimization problems and try out many new algorithms.

The built-in examples use Paris as the sample city, because it is a popular
tourist destination; you can easily adapt them to another city without touching
the Traffic software, since all the location information is provided separately in
a file (using a standard format, XML). It suffices to provide such a file
representing your chosen city. For example, the course as taught at ETH Zurich
uses the Zurich tram system, replacing the Paris metro.

ABSTRACTION

Basing your work on existing components has another important consequence
for your education as a professional software engineer. The program modules
that you reuse are a substantial piece of software, embodying a lot of
knowledge. It would be very difficult to use them for your own applications if
you had to read the full program text of each one you need. Instead, you will
rely on a description of their abstract interfaces, which are extracted from
their text (by automatic software mechanisms, part of EiffelStudio) but retain
only the essential information that you need as a consumer. An abstract
interface is a description of the purpose of a software module that only states
its functions, not how the module’s code realizes these functions. In software
terminology it is also called the specification of the module, excluding the
module’s implementation.

STUDENT_PREFACExx

This technique will help you learn one of the professional software
developer’s key skills: abstraction, meaning here the ability to distinguish the
purpose of any piece of software from the details, often numerous, of its
implementation. Every software development professor and textbook preaches
the virtues of abstraction, and for good reason; here you will get the occasional
bit of preaching too, but mostly you will be encouraged to learn abstraction by
example, experiencing its benefits through the reuse of existing components.
When you get to build your own software, you should apply the same principles;
that is the only way to tame the ogre of software complexity.

The benefits of abstraction are quite concrete; you will experience them
right from the beginning. The first program you will write is only a few lines
long, but already produces a significant result (an animated itinerary on a city
map). It can do this only by using modules from Traffic; and it can use them only
because they are available through an abstract specification. If you had to
examine the text of these modules (their source code), then the text of the
modules they rely on themselves, directly or indirectly, you would quickly
drown in an ocean of details and could not produce anything.

Throughout your work with software, abstraction is the lifevest that will
save you from drowning in the sea of complexity.

DESTINATION: QUALITY

This book teaches not only techniques but methodology. Throughout the
presentation you will encounter design principles and rules on programming
style. Sometimes you may think that I am being fussy and that you could write
the program just as well without the rules. Well, often you could. But the
methodological rules make the difference between an amateurish program,
which sometimes works, sometimes not, and the kind of production-quality
software that you will want to produce. You should apply these rules not just
because this book and your teachers say so, but because the power and speed of
computers magnify any deficiency, however small, and require that the
programmer pay attention to both the big picture and every detail. They are also
good job insurance for your future career: there are many programmers around,
and what really differentiates them in the eyes of an employer is the long-term
quality of the software they produce.

Do not fool yourself with the excuse that “this is only an exercise” or “this
is only a small program”:

→ “A class text”, 2.1,
page 15.

DESTINATION: QUALITY xxi

• Exercises are precisely where you need to learn the best possible
techniques; when Airbus hires you to write the control software for their
next plane, it will be too late.

• Calling a program “small” is often more hope than guarantee. In industry,
many big programs are small programs that grew, since a good program
tends to give its users endless ideas for requesting new functionalities.

So you should apply the same methodological principles to all the programs you
develop, whether small or large, educational or operational.

Such is the goal of this book: not just to take you through the basics of
software engineering and to let you experience the fun and thrill of producing
software that works, but also to develop — along with a sense of beauty for the
principles, methods, algorithms, data structures and other techniques that define
the discipline — a sense for what makes good software stand out, and a
determination to produce programs of the highest possible quality.

BM
Zurich / Santa Barbara, April 2009

November 2012: for this second printing all known errors have been corrected.

Instructor_preface * ∗The preface for stu-
dents is on page xiii.

Right from its subtitle, this book shows its colors: it is not just about learning to
program but about “Learning to Program Well”. I am trying to get the students
started on the right track so that they can enjoy programming — without
enjoyment one does not go very far — and have a successful career; not just a
first job, but a lifelong ability to tackle new challenges.

To help them reach this goal, the book applies innovative ideas detailed in
the rest of this preface:

• Inverted curriculum, also known as the “outside-in” approach, relying on
a large library of reusable components.

• Pervasive use of object-oriented and model-driven techniques.

• Eiffel and Design by Contract.

• A moderate dose of formal methods.

• Inclusion, from the very beginning, of software engineering concerns.

These techniques have for several years been applied to the “Introduction to
Programming” course at ETH Zurich, taken by all entering Computer Science
students. Touch of Class builds on this course and draws from its lessons. This
also means that teachers using it as a textbook can rely on the teaching material
developed for the course: slides, lecture schedules, exercises, self-study
tutorials, student projects, even video recordings of our lectures.

THE CHALLENGES OF A FIRST COURSE

Many computer science departments around the world are wondering today
how best to teach introductory programming. This has always been a difficult
task, but new challenges have added themselves to the traditional ones:

• Adapting to ever higher stakes.

• Identifying the key knowledge and skills to teach.

• Coping with fads and outside pressures.

• Addressing a broad diversity of initial student backgrounds and abilities.

• Meeting high expectations for examples and exercises.

• Introducing the real challenges of professional software development.

• Teaching methodology and formal techniques without scaring off students.

← See “Community
resources”, page vii.

This section is based
on reference [12].

http://se.ethz.ch/touch

INSTRUCTOR_PREFACExxiv

The stakes are getting ever higher. When educating future software
professionals, we must teach durable skills. It is not enough to present
immediately applicable technology, for which in our globalized industry a
cheaper programmer will always be available somewhere.

We must identify the key knowledge and skills to teach. Programming is no
longer a rare, specialized ability; a large proportion of the population gets exposed
to computers, software and some rudimentary form of programming, for example
through spreadsheet macros or Web site development with Python, Ruby on Rails
or ASP.NET. Software engineers need more than the ability to program; they must
master software development as a professional endeavor, and by this distinguish
themselves from the masses of occasional or amateur programmers.

It is important to keep a cool head in the presence of fads and outside
pressures. Fads are a given of our field, and they are not always bad —
structured programming, object technology and design patterns were all fads
once — but we must make sure an idea has proved its mettle before inflicting it
on our students. Outside pressures can be more delicate to handle. Student
families have more say nowadays; this too is not necessarily bad, but sometimes
results in inappropriate demands that we teach the specific technologies
required in the job advertisements of the moment. What this attitude misses is
that four years later some of the fashionable acronyms will be different, and that
competent industry recruiters look for problem-solving skills, not narrow
knowledge. It is our duty to serve the very interests of the students and their
families by teaching them the fundamental matters, which will give them not
just a first job but a rewarding career.

This obsession with learning the right résumé-filling buzzwords for fear of not
landing a job is silly anyway. It is a worldwide phenomenon, likely to last for decades,
that a decent software developer has no trouble finding a good job. For all the gloom
that the media have spread after the “burst of the Internet bubble”, and the fears that
“all the jobs have gone to Bangalore”, no end is in sight to the challenges and
excitement of our field, including of course for our colleagues in Bangalore. But there
is a qualification: people who get and keep good jobs are not the narrow-minded
specialists having been taught whatever filled the headlines of the day; they are the
competent developers possessing a wide and deep understanding of computing
science, and mastery of many complementary technologies.

The broad diversity of student backgrounds complicates the task. Among the
students in the lecture hall on the first day of the introductory course, you will
find some who have barely touched a computer, some who have already built an
e-commerce site, and the full range in-between. What can the teacher do?

THE CHALLENGES OF A FIRST COURSE xxv

• It is tempting to assume a fair amount of prior programming experience and
teach to the most advanced students only; but this shuts out students who
simply have not had the opportunity or inclination to work with computers
yet. In my experience, they include some who can later turn out to be
excellent computer scientists thanks to excellent abstraction skills, which
they have so far applied to topics such as mathematics rather than
computing. The nerdy image still widely associated with computers may
have prevented them from realizing that it is not about late-night video
game sessions fueled by home-delivery pizza (a picture which, in particular,
turns off many girls with excellent computer science potential) but about
cogent thinking applied to solving some of the most exciting intellectual
challenges open to humankind.

• We must not either — at the other extreme — bring everyone down to the
lowest level: we need a way to catch and retain the attention of the more
experienced students, letting them use and expand the insights they have
already gained.

Reliance on reusable components, discussed below, is a central part of this
book’s solution to the issue. By giving students access to high-quality libraries,
we let the novices take advantage of their functionality through abstract
interfaces without needing at first to understand what’s inside. The more
advanced and curious students can, ahead of the others, start to peek into the
internals of the components and use them as guidance for their own programs.

For this to work we need high-quality examples. Students today, having
lived most of their lives in a world awash in the visual and auditory marvels of
software-powered multimedia, expect to see and build more than small
academic programs of the “Compute the 7-th Fibonacci number” kind. We must
meet these expectations of the “Nintendo Generation” [3], without of course
letting technological dazzle push aside the teaching of timeless skills.

A variant of this issue is what we may call the “Google-and-paste” phenomenon,
the name I use for what colleagues (generally using Java or C++ as their teaching
language) report as follows: you give an exercise that calls for, say, a 100-line
program solution. Internet-savvy students quickly find on the Web some Java code
that does the job, except that it does much more as part of, maybe, a 10,000-line
program. Now it does not take long for beginners to hit upon a key piece of
programming wisdom from the ages: that if you see a program that works you mess
with it as little as you can. You hold your breath when coming anywhere close to it.
Following this insight, the student will just switch off (rather than remove) the parts
he or she does not need, through a minimal set of changes. So the teacher gets a
10,000-line solution to an elementary question. Of course one may impose, if not a
full prohibition of Web use (which in a computer science curriculum would be
bizarre), precise rules that would exclude such a “solution”. But how exactly?
“Google-and-paste” is, after all, a form of reuse, even if not exactly the kind
advocated by software engineering textbooks.

INSTRUCTOR_PREFACExxvi

The approach of this book goes one step further. Not only do we encourage reuse,
we actually provide a large amount of code (150,000 lines of Eiffel at the time of
writing) for reuse, and also for imitation since it is available in source form and
explicitly designed as a model of good design and implementation. Reuse is one of
the “best practices” promoted by the course from the beginning; but it is a form of
reuse in line with principles of software engineering, based on abstract interfaces
and contracts.

These questions contribute to the next issue on our list: introducing the real
challenges of professional software development. In a university-level
computer science or software engineering program, we cannot just teach
programming in the small. We have to prepare students for what matters to
professionals: programming in the large. Not all techniques that work well for
small programs will scale up. The very nature of an academic environment,
especially at an introductory level, makes it hard to introduce students to the
actual challenges of today’s industrial software: software developed by many
people, expanding to many lines of code, adapted to many categories of uses and
users, maintained over many years, and undergoing many changes.

This concern for scalability gives particular urgency to the last issue:
introducing methodology and formal reasoning without disconnecting from
the students. Methodological advice — injunctions to use information hiding,
contracts and software engineering principles in general — can sound preachy
and futile to beginners. Introducing some formal (mathematically-based)
techniques, such as axiomatic semantics, can widen this potential gap between
teacher and student. Paradoxically, the students who have already programmed
a bit and stand to benefit most from such admonitions and techniques may be
most tempted to discard them since they know from experience that it is possible
— at least for small programs — to reach an acceptable result without strict rules.
The best way to instill a methodological principle is pragmatic: by showing that
it empowers you to do something that would otherwise be unthinkable, such as
building impressive programs with graphics and animation. Our reliance on
powerful libraries of reusable components is an example: right from the
beginning of the course, students can produce significant applications, visual
and all, thanks to these components; but they would never proceed beyond a few
classes if as a prerequisite they had to read the code. The only reuse that works
here is through abstract interfaces.

Rather than pontificating on abstraction, information hiding and contracts,
it is better to let the students use these techniques and discover that they work.
If an idea has saved you from drowning, you will not discard it as sterile
theoretical advice.

OUTSIDE-IN: THE INVERTED CURRICULUM xxvii

OUTSIDE-IN: THE INVERTED CURRICULUM

The order of topics in programming courses has traditionally been bottom-up:
start with the building blocks of programs such as variables and assignment;
continue with control and data structures; move on if time permits — which it
often does not in an introductory course — to principles of modular design and
techniques for structuring large programs.

This approach gives the students a good practical understanding of the
fabric of programs. But it fails to teach the system construction concepts that
software engineers must master to be successful in professional development.
Being able to produce programs is no longer sufficient; many non-professional
software developers can do this honorably. What distinguishes the genuine
professional is the mastery of system skills for the development and
maintenance of possibly large and complex programs, open for adaptation to
new needs and for reuse of some of their components. Starting from the nuts and
bolts, as in the traditional “CS1” curriculum, may not be the best way to teach
these skills.

Rather than bottom-up — or top-down — the order of this book is
outside-in. It relies on the assumption that the most effective way to learn
programming is to use good existing software, where “good” covers both the
quality of the code — since so much learning happens through imitation of
proven models — and, almost more importantly, the quality of its program
interfaces (APIs).

From the outset we provide the student with powerful software: a set of
libraries, called Traffic, where the top layers have been produced specifically for
this book, and the basic layers on which they rely (data structures, graphics,
GUI, time and date, multimedia, animation…) are widely used in commercial
applications. All this library code is available in source form, providing a
repository of high-quality models to imitate; but in practice the only way to use
them for one’s own programs, especially at the beginning, is through API
specifications, also known as contract views, which provide the essential
information abstracted from the actual code. By relying on contract views,
students are right from the start able to produce interesting applications, even if
the part they write originally consists of just a few calls to library routines. As
they progress, they learn to build more elaborate programs, and to understand
the libraries from the inside: to “open up the black boxes”. By the end of the
course they should be able, if needed, to produce such libraries by themselves.

INSTRUCTOR_PREFACExxviii

This Outside-In strategy results in an “Inverted Curriculum” where the
student starts as a consumer of reusable components and learns to become a
producer. It does not ignore the teaching of standard low-level concepts and
skills, since in the end we want students who can take care of everything a
program requires, from the big picture to the lowest details. What differs is the
order of topics and particularly the emphasis on architectural skills, often
neglected in the bottom-up curriculum.

The approach is intended to educate students so that they will master the key
concepts of software engineering, in particular abstraction. In my career in
industry I have repeatedly observed that the main quality that distinguishes good
software developers is their ability to abstract: to separate the essential from the
accessory, the durable from the temporary, the specification from the
implementation. All good introductory textbooks duly advocate abstraction, but
the result of such exhortations is limited if all the student knows of
programming is the usual collection of small algorithmic examples. I can lecture
on abstraction too, but in the end, as noted earlier, the most effective way to
convey the concepts is by example; by showing to the student how he or she can
produce impressive applications through the reuse of existing software. That
software is large at least by academic standards; trying to reuse it by reading the
source code would take months of study. Yet students can, in the first week of
the course, produce impressive results by reusing it through the contract views.

Here abstraction is not just a nice idea that we ask our students to heed,
another parental incitation to be good and do right. It is the only way to survive
when faced with an ambitious goal which you can only reach by standing on
someone else’s shoulders. Students who have gone early and often through this
experience of building a powerful application through contract-based reuse of
libraries do not need much more haranguing about abstraction and reuse; for
them these concepts become a second nature.

Teaching is better than preaching, and if something is better than teaching it
must be the demonstration — carried out by the students themselves — of the
principles at work, and the resulting “Wow!”.

The supporting software

Central to the Outside-In approach of this book is the accompanying Traffic
software, available for free download. The choice of application area for the
library required some care:

• The topic should be immediately familiar to all students, so that we can spend
our time studying software issues and solutions, not the problem domain. (It
might be fun to take, say, astronomy, but we would end up discussing comets
and galaxies rather than inheritance structures and class invariants.)

From touch.ethz.ch.

http://touch.ethz.ch

OUTSIDE-IN: THE INVERTED CURRICULUM xxix

• The area should provide a large stock of interesting algorithm and data
structure examples, applications of fundamental computer science concepts,
and new exercises that each instructor can devise beyond those in the book.
This should extend beyond the introductory course, to enable our colleagues
teaching algorithms, distributed systems, artificial intelligence and other
computer science topics to take advantage of the software if they wish.

• The chosen theme should call for graphics and multimedia development as
well as advanced graphical user interfaces.

• Unlike many video games, it must not involve violence and aggression,
which would be inappropriate in a university setting (and also would not
help correct the gender imbalance which plagues our field).

The application area that we retained is transportation in a city: modeling,
planning, simulation, display, statistics. The supporting Traffic software is not
just an application, doing a particular job, but a library, providing reusable
components from which students and instructors can build applications.
Although still modest, it has the basic elements of a Geographical Information
System and the supporting graphical display mechanisms.

For its examples the book uses Paris, with its streets and transportation
system; since the city’s description comes from XML files, it is possible to
retarget the example to any other city. (In the second week of the first session of
the course at ETH a few students spontaneously provided a file representing the
Zurich transportation network, which we have been using ever since.)

The very first application that the student produces takes up twelve lines. Its
execution displays a map, highlights the Paris Metro network on the map,
retrieves a predefined route, and shows a visitor traveling that route through
video-game-style graphical animation. The code is:

class PREVIEW inherit
TOURISM

feature
explore

-- Show city info and route.
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

INSTRUCTOR_PREFACExxx

The algorithm includes only four instructions, and yet its effect is impressive
thanks to the underlying Traffic mechanisms.

In spite of the reliance on an extensive body of existing software, I stay
away from giving any impression of “magic”. It is indeed possible to explain
everything, at an appropriate level of abstraction. We should never say “just do
as you are told, you’ll understand when you grow up”. This attitude is no better
at educating students than it is at raising one’s own children. In the first example
as shown above, even the inherit clause can be explained in a simple fashion: I
do not go into the theory of inheritance, of course, but simply tell the students
that class TOURISM is a helper class introducing predefined objects such as
Paris, Louvre, Metro and Route1, and that a new class can “inherit” from such
an existing class to gain access to its features. They are also told that they do not
need to look up the details of class TOURISM, but may do so if they feel the born
engineer’s urge to find out “how things work”.

The rule, allowing our students to approach the topics progressively, is
always to abstract and never to lie.

From programming to software engineering

Programming is at the heart of software engineering, but is not all of it. Software
engineering concerns itself with the production of systems that may be large, are
developed over a long time, undergo many changes, and meet strong constraints
of quality, timeliness and cost. Although the corresponding techniques are usually
not taught to beginners, it is important to provide at least a first introduction,
which appears in the last chapter. The topics include requirements analysis (the
programmers we educate should not just be techies focused on the machinery but
should also be able to talk to customers and understand their needs), facets of
software quality, an introduction to lifecycle models, the concept of agile
development, quality assurance techniques and Capability Maturity Models.

An earlier chapter complements this overview by presenting software
engineering tools, including compilers, interpreters and configuration
management systems.

Terminology

Lucid thinking includes lucid use of words. I have devoted particular attention
to consistent and precisely defined terminology. The most important definitions
appear in call-out boxes, others in the main body of the text.

At the end of each chapter a “New vocabulary” section lists all the terms
introduced, and the first exercise asks the student to provide precise definitions
of each. This is an opportunity to test one’s understanding of the ideas
introduced in the chapter.

TECHNOLOGY CHOICES xxxi

TECHNOLOGY CHOICES

The book relies on a combination of technologies: an object-oriented approach,
Design by Contract, Eiffel as the design and programming language. It is
important to justify these choices and explain why some others, such as Java as
the main programming language, were not retained.

Object technology

Many introductory courses now use an object-oriented language, but not
necessarily in an object-oriented way; few people have managed to blend
genuine O-O thinking into the elementary part of the curriculum. Too often, for
example, the first programs rely on static functions (in the C++ and Java sense
of routines not needing a target object). There sometimes seems to be an implicit
view that before being admitted to the inner chambers of modern technology
students must suffer through the same set of steps that their teachers had to
travel in their time. This approach retains the traditional bottom-up order, only
reaching classes and objects as a reward to the students for having patiently
climbed the Gradus ad Parnassum of classical programming constructs.

There is no good reason for being so fussy about O-O. After all, part of the
pitch for the method is that it lets us build software systems as clear and natural
models of the concepts and objects with which they deal. If it is so good, it
should be good for everyone, beginners included. Or to borrow a slogan from
the waiters’ T-shirts at Anna’s Bakery in Santa Barbara, whose coffee played its
part in fueling the writing of this book: Life is uncertain — Eat dessert first!

Classes and objects appear at the very outset and serve as the basis for the
entire book. I have found that beginners adopt object technology
enthusiastically if the concepts are introduced, without any reservations or
excuses, as the normal, modern way to program.

One of the principal consequences of the central role of object technology
in this presentation is that the notion of model guides the student throughout.
The emergence of “model-driven architecture” reflects the growing recognition
of an idea central to object technology: that successful software development
relies on the construction of models of physical and conceptual systems.
Classes, objects, inheritance and the associated techniques provide an excellent
basis to teach effective modeling techniques.

INSTRUCTOR_PREFACExxxii

Object technology is not exclusive of the traditional approach. Rather, it
subsumes it, much as relativity yields classical mechanics as a special case: an
O-O program is made of classes, and its execution operates on objects, but the
classes contain routines, and the objects contain fields on which programs may
operate as they would with traditional variables. So both the static architecture
of programs and the dynamic structure of computations cover the traditional
concepts. We absolutely want the students to master the traditional techniques
such as algorithmic reasoning, variables and assignment, control structures,
pointer manipulation (whose coverage here includes algorithms to reverse a
linked list, a tricky task seldom covered in introductory courses), procedures
and recursion; they must also be able to build entire programs from scratch.

Eiffel and Design by Contract

We rely on Eiffel and the EiffelStudio environment which students can
download for free from www.eiffel.com. Universities can also install this free
version (and purchase support if desired). This choice directly supports the
pedagogical concepts of this book:

• The Eiffel language is uncompromisingly object-oriented.

• Eiffel provides a strong basis to learn other programming languages such as
Java, C#, C++ and Smalltalk (as demonstrated by appendices which
introduce the essentials of the first three of these languages, in about 30
pages each, by building on the concepts developed in the rest of the book).

• Eiffel is easy for beginners to learn. The concepts can be introduced
progressively, without interference between basic constructs and those not
yet studied.

• The EiffelStudio development environment uses a modern, intuitive GUI,
with advanced facilities including sophisticated browsing, editing, a debugger
with unique reverse execution capabilities, automatic documentation (HTML
or otherwise), software metrics, and leading-edge automatic testing
mechanisms. It produces architectural diagrams automatically from the code;
the other way around, it lets a user draw diagrams from which the environment
will produce the code, with round-trip capabilities.

• EiffelStudio is available on many platforms including Windows, Linux,
Solaris and Microsoft .NET.

• EiffelStudio includes a set of carefully written libraries, which support the
reuse concepts of this book, and serve as the basis of the Traffic library. The
most relevant are: EiffelBase, which by implementing the fundamental
structures of computer science supports the study of algorithms and data
structures in part III: EiffelTime for date and time; EiffelVision, for portable
graphics; and EiffelMedia for multimedia and animation.

→ Appendices A (Java),
B (C#), C (C++).

http://www.eiffel.com

TECHNOLOGY CHOICES xxxiii

• Unlike tools designed exclusively for education, Eiffel is used commercially
for mission-critical applications handling tens of billions of dollars in
investments, managing health care systems, performing civil and military
simulations, and tackling other problems across a broad range of application
areas. This is in my opinion essential to effective teaching of programming; a
tool that is really good should be good for professionals as well as for novices.

• The Eiffel language is specified by a standard of the International Standards
Organization. For the teacher relying on a programming language, an
international standard, especially an ISO standard, is a guarantee of
sustainability and precise definition.

• Eiffel is not just a programming language but a method whose primary aim
— beyond expressing algorithms for the computer — is to support thinking
about problems and their solutions. It enables us to teach a seamless
approach that extends across the software lifecycle, from analysis and
design to implementation and maintenance. This concept of seamless
development, supported by the round-trip Diagram Tool of EiffelStudio, is
in line with the modeling benefits of object technology.

To support these goals, Eiffel directly implements the concepts of Design by
Contract, which were developed together with Eiffel and are closely tied to
both the method and the language. By equipping classes with preconditions,
postconditions and class invariants, we let students use a much more systematic
approach than is currently the norm, and prepare them to become successful
professional developers able to deliver bug-free systems.

One should also not underestimate the role of syntax, for beginners as well as
for experienced programmers. Eiffel’s syntax — illustrated by the earlier short
example — facilitates learning, enhances program readability, and fights mistakes:

• The language avoids cryptic symbols.

• Every reserved word is a simple English word, unabbreviated (INTEGER,
not int).

• The equal sign =, rather than doing violence to hundreds of years of
mathematical tradition, means the same as in math.

• Semicolons are not needed. In most of today’s languages, program texts are
peppered with semicolons terminating declarations and instructions. Most
of the time there is no reason for these pockmarks; even when not
consciously noticed, they affect readability. Being required in some places
and illegal in others, for reasons obscure to beginners, they can be a source
of errors. In Eiffel the semicolon as separator is optional, regardless of
program layout. This leads to a neat program appearance, as you may see by
picking any example in the book.

For the text of the stan-
dard see tinyurl.com/
y5abdx or the ECMA
version (same con-
tents, free access) at
tinyurl.com/cq8gw.

← Class PREVIEW,
page xxix.

http://tinyurl.com/y5abdx
http://tinyurl.com/y5abdx
http://tinyurl.com/cq8gw

INSTRUCTOR_PREFACExxxiv

Encouraging such cleanliness in program texts should be part of the teacher’s
pedagogical goals. Eiffel includes precise style rules, explained along the way
to show students that good programming requires attention to both the
high-level concepts of architecture and the low-level details of syntax and style:
quality in the large and quality in the small.

More generally, a good language should let its users focus on the concepts
rather than the notation. This is one of the goals of using Eiffel for teaching: that
students should think about their problems, not about Eiffel

Why not Java?

Since courses in recent years have often used Java, or a Java variant such as C#,
it is useful to explain why we do not follow this practice. Java is important for
a computer scientist to know — indeed, as mentioned, the book provides an
appendix describing Java, along with others on C#, C++ and C — but not
suitable as a first teaching language. There is simply too much baggage to be
learned before the student can start to think about the problems. This is apparent
from the first program attempts; a Java “Hello World” reads

This is full of irrelevant concepts, each an obstacle to learning. Why “public”,
“static”, “void”? (Sure, I’ll make my program public if you insist, but do you
mean my efforts are void of any value?) These keywords have nothing to do with
the purpose of the program, and the student won’t begin to understand what they
mean for a few months at least, yet he or she must include them, like magic
incantations, for their programs to work. For the teacher this means repeatedly
engaging in injunctions to use certain constructions without understanding what
they mean. As noted earlier, this “You’ll understand when you grow up” style is
not good pedagogy. Eiffel protects us from it: we can explain every programming
language construct that we use, right from the first example.

The object-oriented nature of Eiffel and the simplicity of the language play
a role. It is ironic that every Java program, starting with the simplest example as
shown above, uses a static function as its main program, departing from the
object-oriented style of programming. There are of course people who do not
like the idea of using O-O for the first course; but if you do choose objects, you
should be consistent. At some point the students will realize that this
fundamental scheme — the one you told them to use, from the first example to
every subsequent one — is not object-oriented after all; how can you answer
their inevitable question with a straight face?

class First {
 public static void main(String args[])
 { System.out.println("Hello World!"); } }

TECHNOLOGY CHOICES xxxv

Syntax, as noted, matters. In this first example the student must master
strange symbol accumulations, like the final “"); } }”, disconcerting to the eye
and with no obvious role. In this accumulation the precise order of the symbols
is essential, but is hard to explain and to remember. (Why a semicolon between
a closing parenthesis and a brace? Is there a space after that semicolon, and if so
how important is it?) Such aspects are troubling to beginners; inevitably, much
time and effort are consumed learning them and recovering from trivial
mistakes causing mysterious results, just when the student should be
concentrating on the concepts of programming.

Another source of confusion is the use of “=” for assignment, inherited from
Fortran through C and hard to justify in the twenty-first century. How many
students starting with Java have wondered what value a must have for a = a + 1
to make sense, and, as noted by Wirth [15], why a = b does not mean the same
as b = a ?

Inconsistencies are troubling: why, along with full words like “static”, use
abbreviations such as “args” and “println”? Students will retain from that first
exposure to programming that it is not necessary to be consistent, and that
saving keystrokes is more important than choosing clear names. (In the basic
Eiffel library the operation to go to the next line is called put_new_line.) If
indeed we later introduce methodological advice urging students to choose clear
and consistent names, we can hardly expect them to take us seriously. “Do as I
say, not as I do” is another dubious pedagogical technique.

To cite another example: when describing the need for a mechanism for
treating operations as objects, like Eiffel’s agents or the closures of other
languages, I had to explain how one addresses the issue in a language such as
Java that does not have these mechanisms. Since I used iterators as one of the
motivating examples, I was at first happy to find that the original Sun page
describing Java’s “inner classes” also had code for an iterator design, which it
would have been nice to use as a model. But then it includes declarations such as

I can perhaps try to justify this to seasoned programmers, but there is no way I can
explain it to beginning students — and I admire anyone who can. Why does
StepThrough appear three times? Does it denote the same thing each time? Is the
change of letter case (StepThrough vs stepThrough) relevant? What does the
whole thing mean anyway? Very quickly the introductory programming course

public StepThrough stepThrough() {
 return new StepThrough();
 }

→ Chapter 17.

See tinyurl.com/c4oprq
(archive of java.sun.
com/docs/ books/tuto-
rial/java/ javaOO/
innerclasses.html, Oct.
2007; the page now uses
a different example).

http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://tinyurl.com/c4oprq

INSTRUCTOR_PREFACExxxvi

turns into painful exegesis of the programming language, with little time left for
real concepts. In Alan Perlis’s words, “A programming language is low-level when
its programs require attention to the irrelevant”.

Also contributing to the difficulties of using Java in an introductory course
are the liberties that the language takes with object-oriented principles.
For example:

• If x denotes an object and a one of the attributes of the corresponding class,
you may by default write the assignment x.a = v to assign a new value to
the a field of the object. This violates information hiding and other design
principles. To rule it out, you must shadow every attribute with a “getter”
function. For the teacher, the choice is between forcing students early on to
add such noise to their programs, or let them acquire bad design habits
which are then hard to unlearn.

• Java strictly distinguishes fully abstract modules, called interfaces, from
fully implemented ones — classes. One of the benefits of the class
mechanism, available as early as Simula 67, is to offer a full range of
possibilities between these extremes. This idea is at the core of teaching the
object-oriented method, in particular teaching design: you can express a
notion, when you first identify it, as a fully deferred (abstract) class; then
you refine it progressively, through inheritance, into a fully effective class.
Classes at intermediate levels in this process are partially deferred and
partially effective. Java does not let you use this approach if you may need
to combine two or more abstractions through inheritance: all but at most one
of the combined modules must be interfaces.

There are many more examples of such influences of Java on the teaching
process; a new Eiffel user expressed a typical reaction by writing on a mailing
list that “I have written a lot of C++ and Java; all my brain power went on
learning loads of nerdy computer stuff. With Eiffel I do not notice the
programming and spend my time thinking about the problem.”

A reason often invoked for using Java or C++ in introductory programming
is the market demand for programmers in these languages. This is a valid
concern, but it applies to the computer science curriculum as a whole, not to the
first course. Programming at the level required of a CS graduate today is hard
enough; we should use the best pedagogical tools. If market demand had been
the determinant, we would never in the past have used Pascal (for many years
the introductory language of choice), even less Scheme. Following the trends
reflected in the latest ads for programmers we would in turn have imposed
Fortran, Cobol, PL/I, Visual Basic, maybe C — and trained programmers who,
a few years after graduation, would have found their skills obsolete when the
great wheel of fashion turned. Our duty is to train problem-solvers who can
quickly adapt to the evolutions of our discipline.

Epigram #8, available
at www-pu.informa-
tik.uni-tuebin-
gen.de/users/klaeren/
epigrams.html.

http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html

TECHNOLOGY CHOICES xxxvii

We should not let short-term market considerations damage pedagogical
principles. In other words: if you think Java or C++ are ideal teaching tools, use
them; you probably will not like this book very much anyway. But if you agree
with its approach, do not let yourself be scared that some student or parent will
complain that you use an “academic” approach. Explain to them that you are
teaching programming in the best way you know, that someone who understands
programming will retain that skill for life, and that any half-decent software
engineer can pick up a new programming language at breakfast — in case he or
she has not already picked it up from other courses of your curriculum. As to the
“academic” qualification (assuming that in a university context, it is meant as
derogatory!), point them to eiffel.com and its long list of mission-critical systems
in Eiffel in the financial industry, aerospace, defense, networking,
computer-aided design, health care and other areas, successfully deployed by
major companies, often after attempts in other languages had failed.

Java, C#, C++ and C are, for the next few years, an important part of any
software engineer’s baggage; it is important, as reflected by this book’s four
language-specific appendices, to ensure that the students know them. This goal
is, however, unrelated to the question of what techniques to use in the
introductory course. Students will most likely be exposed to these languages at
some point; it would be a rare curriculum these days where no course uses at
least one of them. In any case, no introductory course that I know covers all of
them, so students need to learn more regardless of the initial teaching language.

Programming languages and the programming culture associated with each
of them are interesting objects of study. Our group at ETH, which teaches
introductory programming in Eiffel, has introduced courses for the third year
and beyond, devoted to specific languages: “Java in Depth”, “C# in Depth” etc.

Once you understand the concepts of programming, you are well prepared
to master diverse languages. Eiffel is a benefit here too: as many people have
noted, having learned Eiffel and its object model helps you become a better C++
or Java programmer.

As a potential employer in both academia and industry I see dozens of CVs every
month. They all boast of the same skills, including C++ and Java. Other than as
checkboxes to be ticked, this will not impress anyone. What recruiters do watch for
is any skill that sets out an applicant from the hordes of others with similar
backgrounds. An example of such a distinctive advantage is that the applicant
knows a fully object-oriented approach with support for software engineering, as
evidenced by a curriculum using Eiffel and Design by Contract. It is possible to
survive a C++-based curriculum without ever understanding O-O concepts in any
depth; with Eiffel that is less likely. Competent employers know that what counts,
beyond immediate skills, is depth of understanding of software issues and aptitude
for long-term professional development. All the effort deployed through this book
and its use of Eiffel is directed at these goals.

It may be appropriate here to cite Alan Perlis again: A language that doesn’t
affect the way you think about programming is not worth knowing.

In our surveys [13],
about 50% of students
have used Java or C++
before they reach the
introductory course.

Epigram #19.

http://eiffel.com

INSTRUCTOR_PREFACExxxviii

HOW FORMAL?

One of the benefits of the Design by Contract approach is to expose the
students to a gentle dose of “formal” (mathematics-based) methods of
software development.

The software world needs, among other advances, more use of formal
methods. Any serious software curriculum should devote at least one course
entirely to mathematics-based software development, based on a mathematical
specification language. In addition — although not as a substitute for such a
course — the ideas should influence the entire software curriculum, even
though as discussed below it is not desirable today to subject beginners to a fully
formal approach. The challenge is not only to include an introduction to formal
reasoning along with practical skills, but to present the two aspects as
complementary, closely related, and both indispensable. The techniques of
Design by Contract, tightly woven into the fabric of object-oriented software
architecture, permit this.

Teaching Design by Contract awakens students to the idea of
mathematics-based software development. Almost from the first examples of
interface specifications, routines possess preconditions and postconditions, and
classes possess invariants. These concepts are introduced in the proper context,
treated — as they should, although many programmers still fear them, and most
programming languages offer no support for contracts — as the normal, obvious
way to reason about programs. Without intimidating students with a heavy-duty
formal approach, we open the way for the introduction of formal methods, which
they will fully appreciate when they have acquired more experience with
programming.

In no way does the use of a mathematical basis imply a stiff or intimidating
manner. Some formality in the concepts goes well with a practical, hands-on
approach. For example the text introduces loops as an approximation
mechanism, to compute a solution on successively larger subsets of the data; in
this view the notion of loop invariant comes naturally, at the very beginning of
the discussion of loops, as a key property stating the approximation obtained at
every stage.

This emphasis on practicality distinguishes Design by Contract from the
fully formal approaches used in some introductory courses, whose teachers hold
that students should first learn programming as a mathematical discipline.
Sometimes they go so far as to keep them away from the computer for a
semester or a full year. The risk of such dogmatism is that it may produce the
reverse of its intended effect.

→ In chapter 4.

HOW FORMAL? xxxix

Students, in particular those who have programmed before, realize that they
can produce a program — not a perfect program, but a program — without a
heavy mathematical apparatus; if you tell them that it’s not possible they will
just disconnect: they may from then on reject any formal technique as irrelevant,
including both simple ideas which can help them now and more advanced ones
later. As Leslie Lamport — not someone to be suspected of underestimating the
value of formal methods — points out [6]:

[In American universities] there is a complete separation between
mathematics and engineering. I know of one highly regarded
American university in which students in their first programming
course must prove the correctness of every tiny program they write. In
their second programming course, mathematics is completely
forgotten and they just learn how to write C programs. There is no
attempt to apply what they learned in the first course to the writing of
real programs.

Our experience confirms this. First-year students, who react well to Design by
Contract, are not ready for a fully formal approach. To develop a real
appreciation for its benefits you must have encountered the difficulties of
industrial software development. On the other hand, it also does not work to let
students develop a totally informal approach first and, years later, suddenly
reveal that there is more to programming than hacking. The appropriate
technique, I believe, is incremental: introduce Design by Contract techniques
right from the start, with the associated idea that programming is based on a
mathematical style of reasoning, but without overwhelming students with
concepts beyond their reach; let them master the practice of software
development on the basis of this moderately formal approach; later in the
curriculum, bring in courses on such topics as formal development and
programming language semantics. This cycle can be repeated, as theory and
practice reinforce each other.

Such an approach helps turn out students for whom correctness concerns are
not an academic chimera but a natural, ever-present component of the software
construction process.

In the same spirit, the discussion of high-level functional objects (agents, chapter
17, and their application to event-driven programming in chapter 18) provides the
opportunity of a simple introduction to lambda calculus, including currying —
mathematical topics that are seldom broached in introductory courses but have
applications throughout the study of programming.

INSTRUCTOR_PREFACExl

OTHER APPROACHES

Looking around at university curricula, talking to teachers and examining
textbooks leads to the observation that four main approaches exist today for
introductory programming:

1 Language-focused.

2 Functional (in the sense of functional programming).

3 Formal.

4 Structured, Pascal or Ada-style.

It is important to understand the benefits of these various styles — indeed we
retain something from each of them — and their limitations.

The first approach is probably the most common nowadays. It focuses on a
particular programming language, often Java or C++. This has the advantage of
practicality, and of easily produced exercises (subject to the Google-and-Paste
risk), but gives too much weight to the study of the chosen language at the
expense of fundamental conceptual skills. Relying on Eiffel helps us teach the
concepts, not the specifics of a language.

The second approach is illustrated in particular by the famous MIT course
based on the Scheme functional programming language [1], which has set the
standard for ambitious curricula; there also have been attempts using Haskell,
ML or OCaml. This method is strong on teaching the logical reasoning skills
essential to a programmer. We strive to retain these benefits, as well as the
relationship to mathematics, present here through logic and Design by Contract.
But in my opinion object technology provides students with a better grasp of the
issues of program construction. Not only is an O-O approach in line with the
practices of the modern software industry, which has shown little interest in
functional programming; more importantly for our pedagogical goals, it
emphasizes system building skills and software architecture, which should be at
the center of computer science education.

While, as noted, the curriculum should not be a slave to the dominant
technologies just because they are dominant, using techniques too far removed
from practice subjects us to the previously mentioned risk of disconnecting from
the students, especially the most advanced ones, if they see no connection
between what they are being taught and what their incipient knowledge of the
discipline tells them. (Alan Perlis put this less diplomatically: Purely
applicative languages are poorly applicable.)

Epigram #108.

TOPICS COVERED xli

I would argue further that the operational, imperative aspects of software
development, downplayed by functional programming, are not just an
implementation nuisance but a fundamental component of the discipline of
programming, without which many of the most difficult issues disappear. If this
view is correct, we are not particularly helping students by protecting them from
these aspects at the beginning of their education, presumably abandoning them
to their own resources when they encounter them later. (Put in a different way:
functional programming seems to require monads these days and, given a
choice, I’d rather teach assignment than category theory.)

It is useful to point out that O-O programming is as mathematically respectable —
through the theory of abstract data types on which it rests and, in Eiffel, the reliance
on contracts — and as full of intellectual challenges as any other approach.
Recursion, one of the most fascinating tools of functional programming, receives
extensive coverage in the present book.

Some of the comments on functional programming also apply to the third
approach, reliance on formal methods. As discussed above, a fully formal
approach is, at the introductory programming level, premature. The practical
effect may be to convince students that academic computer science has nothing
to do with the practice of software engineering, and lead them to a jaded,
method-less approach to programming.

The fourth commonly used approach, pioneered at ETH, draws its roots in
the structured programming work of the seventies, and is still widespread. It
emphasizes program structure and systematic development, often top-down.
The supporting programming language is typically Pascal, or one of its
successors such as Modula-2, Oberon or Ada. The approach of this book is heir
to that tradition, with object technology viewed as a natural extension of
structured programming, and a focus on programming-in-the-large to meet the
challenges of programming in the new century.

TOPICS COVERED

The book is divided into five parts.

Part I introduces the basics. It defines the building blocks of programs, from
objects and classes to interfaces, control structures and assignment. It puts a
particular emphasis on the notion of contract, teaching students to rely on
abstract yet precise descriptions of the modules they use, and to apply the same
care to defining the interface of the modules they will produce. A chapter on
“Just Enough Logic” introduces the key elements of propositional calculus and
predicate calculus, both essential for the rest of the discussion. Back to
programming, subsequent chapters deal with object creation and the object

→ Chapter 14.

→ Chapter 5.

INSTRUCTOR_PREFACExlii

structure; they emphasize the modeling power of objects and the need for our
object models to reflect the structure of the external systems being modeled.
Assignment is introduced, together with references and the tricky issues of
working with linked structures, only after program structuring concepts.

Part II, entitled “How things work”, presents the internal perspective. It
starts with the basics of computer organization (covered from the viewpoint of
a programmer and including essential concepts only), syntax description
methods (BNF and its applications), programming languages and programming
tools. The two chapters that follow cover core topics: syntax and how to
describe it, including BNF and an introduction to the theory of finite automata;
and an overview of programming languages, programming tools and software
development environments.

Part III examines fundamental data structure and algorithm techniques. It is
made of three chapters:

• Fundamental data structures — not a substitute for the “Data Structures and
Algorithms” course which often follows the introductory course, but
introducing genericity, algorithm complexity, and several important data
structures such as arrays, lists of various kinds and hash tables.

• Recursion, including binary trees (in particular binary search trees), an
introduction to fixpoint interpretations, and a presentation of techniques for
implementing recursion.

• A detailed exploration of one interesting algorithm family, topological sort,
chosen for its many instructive properties affecting both algorithm design
and software engineering. The discussion covers the mathematical
background, the progressive development of the algorithm for efficient
execution, and the engineering of the API for convenient practical use.

Part IV goes into the depth of object-oriented techniques. Its first chapter covers
inheritance, addressing many details seldom addressed in introductory courses,
such as the Visitor pattern (which complements basic inheritance mechanisms
for the case of adding operations to existing types). The next chapter addresses
a technique that is increasingly accepted as a required part of modern
object-oriented frameworks: function objects, also known as closures, delegates
and agents (the term used here). It includes an introduction to lambda calculus.
The final chapter in this part applies agent techniques to an important style of
programming: event-driven computation. This is the opportunity to review
another design pattern, Observer, and analyze its limitations.

Part V adds the final dimension, beyond mere programming, by introducing
concepts of software engineering for large, long-term projects.

Appendices, already mentioned, provide an introduction to programming
languages with which students should be familiar: Java, C#, C++ — a bridge
between the C and O-O worlds — and C itself.

ACKNOWLEDGMENTS xliii

ACKNOWLEDGMENTS

A number of elements of this Instructor’s Preface are taken from earlier
publications: [7], [8], [9], [10], [12].

This book has its source, as noted, in the “Introduction to Programming”
course at ETH Zurich and would not have been possible without the outstanding
environment provided by ETH. Both the course and the book exist as a result of
Olaf Kübler’s trust (or wager) that in addition to entrepreneur I could also be a
professor. Specific thanks go to the Rectorate (which financed the initial
development of the Traffic library), to the Rector himself, Konrad Osterwalder,
and to the computer science department, particularly Peter Widmayer who, as
then department head, first asked me whether I would like to teach introductory
programming, and made the effort of coordinating his own course with mine.

I have taught the course every Fall since 2003 and am indebted to the
outstanding assistant team that has built an effective operation for handling
exercise sessions, supporting students, devising exercises and exams, grading
them, organizing student projects, writing supplementary documents and
teaching aids, and on the odd occasion substituting for me in lectures. This has
enabled me to concentrate on developing the pedagogical concepts and the core
material, reassured that the logistics would work. I am also grateful to the
hundreds of students who have taken this course, put up with my trials and
errors, and provided feedback, including the best kind of feedback one can hope
for: excellent software projects.

The course assistants, 2003-2008, have been: Volkan Arslan, Stephanie
Balzer, Till Bay, Karine Bezault (Karine Arnout), Benno Baumgartner, Rolf
Bruderer, Ursina Caluori, Robert Carnecky, Susanne Cech Previtali, Stephan
Classen, Jörg Derungs, Ilinca Ciupa, Ivo Colombo, Adam Darvás, Peter Farkas,
Michael Gomez, Sebastian Gruber, Beat Herlig, Matthias Konrad, Philipp
Krähenbühl, Hermann Lehner, Andreas Leitner, Raphael Mack, Benjamin
Morandi, Yann Müller, Marie-Hélène Nienaltowski (Marie-Hélène Ng Cheong
Vee), Piotr Nienaltowski, Michela Pedroni, Marco Piccioni, Conrado Plano,
Nadia Polikarpova, Matthias Sala, Bernd Schoeller, Wolfgang Schwedler, Gabor
Szabo, Sébastien Vaucouleur, Yi (Jason) Wei and Tobias Widmer. While I should
cite virtually all members of the ETH Chair of Software Engineering for their
support and ideas I must at least single out Manuel Oriol for his participation in
our education research, Till Bay (for his development of the EiffelMedia library,
the basis for so many student projects, of the EiffelVision drawables of Traffic in
his diploma thesis, and of the Origo project hosting site at origo.ethz.ch as part of
his PhD thesis), Karine Bezault, Ilinca Ciupa, Andreas Leitner, Michela Pedroni
and Marco Piccioni (all of them head assistants at some point and helpful in many
other ways). Claudia Günthart provided excellent administrative support.

See e.g. games.ethz.ch.

http://games.ethz.ch
http://origo.ethz.ch

INSTRUCTOR_PREFACExliv

The Traffic software has a particularly important role in the approach of this
book. The current version was developed over several years by Michela
Pedroni, starting from an original version written by Patrick Schönbach under
the management of Susanne Cech Previtali; a number of students contributed to
the software, supervised by Michela in various semester and master’s projects,
in particular (in approximate chronological order) Marcel Kessler, Rolf
Bruderer, Sibylle Aregger, Valentin Wüstholz, Stefan Daniel, Ursina Caluori,
Roger Küng, Fabian Wüest, Florian Geldmacher, Susanne Kasper, Lars Krapf,
Hans-Hermann Jonas, Michael Käser, Nicola Bizirianis, Adrian Helfenstein,
Sarah Hauser, Michele Croci, Alan Fehr, Franziska Fritschi, Roger Imbach,
Matthias Loeu, Florian Hotz, Matthias Bühlmann, Etienne Reichenbach and
Maria Husmann. Their role was essential in bringing the user perspective to the
product, as most of them had previously taken the introductory course with early
versions of Traffic. Michela Pedroni was also instrumental in reconciling the
software with the book and the other way around and, more generally, in helping
develop the underlying pedagogical approach — inverted curriculum,
outside-in, tool support (see trucstudio.origo.ethz.ch). Marie-Hélène
Nienaltowski also participated in our pedagogical work, provided the TOOTOR
system to help students master the material, and tried out the approach at
Birkbeck College, University of London.

I am grateful to my colleagues in the Computer Science Department
(Departement Informatik) at ETH for many spirited discussions about the
teaching of programming; I should acknowledge in particular the criticism and
suggestions of Walter Gander (who also helped me improve an important
numerical example), Gustavo Alonso, Ueli Maurer, Jürg Gutknecht, Thomas
Gross, Peter Müller and Peter Widmayer. Beyond ETH, I benefited from many
discussions with educators including Christine Mingins, Jonathan Ostroff, John
Potter, Richard E. Pattis, Jean-Marc Jézéquel, Vladimir Billig, Anatoly Shalyto,
Andrey Terekhov and Judith Bishop.

Like all my work of recent years, this book has a huge debt to the
outstanding work of developing the EiffelStudio environment and libraries at
Eiffel Software under the leadership of Emmanuel Stapf and with the
participation of the entire development team. I am also grateful to the
willingness of the ECMA International TC49-TG4 standard committee, in
charge of the ISO Eiffel standard, to take into consideration the needs of
beginning students when discussing improvements and extensions to the
language design; the debt here is to Emmanuel Stapf again, Mark Howard, Éric
Bezault, Kim Waldén, Zoran Simic, Paul-Georges Crismer, Roger Osmond,
Paul Cohen, Christine Mingins and Dominique Colnet. Discussions on the
Eiffel Software user list have also been most enlightening. groups.eiffel.com.

http://trucstudio.origo.ethz.ch
http://groups.eiffel.com

BIBLIOGRAPHY xlv

Listing even a subset of the people whose work has influenced the present
one would take many pages. Many are cited in the text itself but one is not: the
presentation of recursion owes some of its ideas to the online record of Andries
van Dam’s lectures at Brown.

Many people provided comments on drafts of the book; I should in
particular note Bernie Cohen (although his principal influence on this book
occurred many years earlier, when he proposed the concept of inverted
curriculum), Philippe Cordel, Éric Bezault, Ognian Pishev and Mohamed
Abd-El-Razik, as well as ETH students and assistants Karine Bezault, Jörg
Derungs, Werner Dietl, Moritz Dietsche, Luchin Doblies, Marc Egg, Oliver
Jeger, Ernst Leisi, Hannes Röst, Raphael Schweizer and Elias Yousefi. Hermann
Lehner contributed several exercises. Trygve Reenskaug contributed important
and perceptive comments on the event-driven design chapter. I am particularly
grateful for the extensive reading and error reporting that Marco Piccioni and
Stephan van Staden performed on chapters of the last drafts.

Special thanks are due to the originators of the material from which the
language-specific appendices is drawn: Marco Piccioni (Java, appendix A),
Benjamin Morandi (C#, appendix B) and Nadia Polikarpova (C++, appendix C).
I obviously remain responsible for any deficiency in the resulting presentations.

I cannot find strong enough words to describe the value of the extremely
diligent proofreading of the final version by Annie Meyer and Raphaël Meyer,
resulting in hundreds (actually thousands) of corrections and improvements.

Since so many people have helped I am afraid I am forgetting some, and will
keep a version of this section online, correcting any omissions. I do want to end,
however, by acknowledging the help and advice of Monika Riepl, from le-tex
publishing services in Leipzig, on typesetting issues, and the warm and efficient
support, throughout the publishing process, of Hermann Engesser and Dorothea
Glaunsinger from Springer Verlag.

BM
Santa Barbara / Zurich, April 2009

BIBLIOGRAPHY

[1] Harold Abelson and Gerald Sussman: Structure and Interpretation of Computer
Programs, 2nd edition, MIT Press, 1996.

[2] Bernard Cohen: The Inverted Curriculum, Report, National Economic
Development Council, London, 1991.

[3] Mark Guzdial and Elliot Soloway: Teaching the Nintendo Generation to Program,
in Communications of the ACM, vol. 45, no. 4, April 2002, pages 17-21.

[4] Joint Task Force on Computing Curricula: Computing curricula 2001 (final report).
December 2001, tinyurl.com/d4uand.

See touch.ethz.ch/
acknowledgments.

http://touch.ethz.ch/ acknowledgments
http://tinyurl.com/d4uand

INSTRUCTOR_PREFACExlvi

[5] Joint Task Force for Computing Curricula 2005: Computing Curricula 2005, 30
September 2005, www.acm.org/education/curric_vols/CC2005-March06Final.pdf.

[6] Leslie Lamport: The Future of Computing: Logic or Biology; text of a talk given at
Christian Albrechts University, Kiel on 11 July 2003, research.microsoft.com/users/
lamport/pubs/future-of-computing.pdf.

[7] Bertrand Meyer: Towards an Object-Oriented Curriculum, in Journal of
Object-Oriented Programming, vol. 6, no. 2, May 1993, pages 76-81. Revised version
in TOOLS 11 (Technology of Object-Oriented Languages and Systems), eds. R. Ege, M.
Singh and B. Meyer, Prentice Hall, Englewood Cliffs (N.J.), 1993, pages 585-594.

[8] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice
Hall, 1997, especially chapter 29, “Teaching the Method”.

[9] Bertrand Meyer: Software Engineering in the Academy, in Computer (IEEE), vol. 34, no.
5, May 2001, pages 28-35,se.ethz.ch/~meyer/publications/computer/academy.pdf.

[10] Bertrand Meyer: The Outside-In Method of Teaching Introductory Programming,
in Manfred Broy and Alexandre V. Zamulin, eds., Ershov Memorial Conference,
volume 2890 of Lecture Notes in Computer Science, pages 66-78. Springer, 2003.

[11] Christine Mingins, Jan Miller, Martin Dick, Margot Postema: How We Teach
Software Engineering, in Journal of Object-Oriented Programming (JOOP), vol. 11,
no. 9, 1999, pages 64-66 and 74.

[12] Michela Pedroni and Bertrand Meyer: The Inverted Curriculum in Practice, in
Proceedings of SIGCSE 2006 (Houston, 1-5 March 2006), ACM, se.ethz.ch/~meyer/
publications/teaching/sigcse2006.pdf.

[13] Michela Pedroni, Manuel Oriol and Bertrand Meyer: What do Beginning CS
students know?, submitted for publication, 2009.

[14] Raymond Lister: After the Gold Rush: Toward Sustainable Scholarship in
Computing, in Proceedings of Tenth Australasian ComputingEducation Conference
(ACE2008), Wollongong, January 2008), crpit.com/confpapers/CRPITV78Lister.pdf.

[15] Niklaus Wirth: Computer Science Education: The Road Not Taken, opening
address at ITiCSE conference, Aarhus, Denmark, June 2002, www.inr.ac.ru/~info21/
texts/2002-06-Aarhus/en.htm.

Web addresses come and go. All URLs appearing in this bibliography and the rest
of the book were operational on April 19, 2009.

http://research.microsoft.com/users/lamport/pubs/future-of-computing.pdf
http://research.microsoft.com/users/lamport/pubs/future-of-computing.pdf
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf
http://se.ethz.ch/~meyer/publications/computer/academy.pdf
http://se.ethz.ch/~meyer/publications/teaching/sigcse2006.pdf
http://se.ethz.ch/~meyer/publications/teaching/sigcse2006.pdf
http://www.inr.ac.ru/~info21/texts/2002-06-Aarhus/en.htm
http://www.inr.ac.ru/~info21/texts/2002-06-Aarhus/en.htm
http://crpit.com/confpapers/CRPITV78Lister.pdf

Note to instructors: what to cover?

To provide flexibility for the instructor, the book has more material than will typically be
covered in a one-semester course. The following is my view of what constitutes essential
material and what can be viewed as optional. It is based on my experience and will naturally
need to be adapted to every course’s specifics and every instructor’s taste.

• Chapters 1 to 4 should probably be covered in their entirety, as they introduce
fundamental concepts.

• Chapter 5 on logic introduces fundamental concepts. If students are also taking a logic
course the material can be covered briefly, with a focus on relating computer scientists’
and logicians’ notations and conventions. I find it useful to insist on the properties of
implication, initially counter-intuitive to many students (“Getting a practical feeling for
implication”, page 86); also, the course should discuss semistrict boolean operators
(5.3), which logicians usually do not cover.

• Chapter 6 on object creation is necessary for the rest of the presentation.

• So is chapter 7 on control structures up to 7.6; the remaining sections present details of
the low-level branching structure and some language variants. You should mention
structured programming (7.8).

• Chapter 8 on routines should in my view be included in its entirety; in particular it is
useful to provide a simple proof of the undecidability of the Halting Problem.

• In chapter 9, sections up to 9.5 cover fundamental concepts. 9.6, discussing the diffi-
culty of programming with references, with the example of list reversal, is important
but more advanced. The last subsection, on dynamic aliasing, is optional material.

• How much to cover chapter 10 on computers depends on what students are learning
elsewhere about computer architecture. The chapter is not deep but provides basic points
of reference for programmers.

• Chapter 11 on syntax is important material but not absolutely required for the rest of the
book. I suggest covering at least the sections up to 11.4 (if only because students need
to understand the concept of abstract syntax). If most students will not take a course on
language and compilers, they will benefit from the basic concepts in subsequent sections.

• Chapters 12 on programming languages and tools is background material; I do not cover
it explicitly in my class but provide it as a resource.

• Chapter 13 introduces fundamental concepts on data structures, genericity, static typing
and algorithm complexity. It is possible to skip 13.8 (list variants) and 13.13 (iteration).

NOTE TO INSTRUCTORS: WHAT TO COVER?xlviii

• Chapter 14 discusses recursion in some depth — more depth than is customary in an
introductory presentation, because I feel it is useful to remove the potential mystery of
recursive algorithms and show the importance of recursion beyond algorithms: recursive
definitions, recursive data structures, recursive syntax productions and recursive proofs.
The core material is the beginning of the chapter: 14.1 to 14.4, including the discussion
of binary trees. The other sections may be viewed as supplementary; backtracking and
alpha-beta (14.5) are a useful illustration of the applications of recursion. If the course
is strongly implementation-oriented, consider 14.9 (implementing recursion); if you
think that contracts are important, direct the students to 14.8 (contracts and recursion).

• Chapter 15 is a detailed discussion of an important application, topological sort. It
introduces no new programming construct and so you can skip it, or replace it with one
of your own examples, without damage. I cover it in some depth because it describes the
complete progression from mathematics to algorithms to choice of optimal data
structures to proper engineering of the API.

• In chapter 16, on inheritance, the essential sections are 16.1 to 16.7, plus 16.9 on the role
of contracts, which illuminates the whole concept of inheritance. It is also useful to
explain the connection to genericity in 16.12. The end of the chapter, in particular 16.14
about the Visitor pattern, is more advanced material that most courses probably will not
have the time to cover, but which can be given as a reading assignment or as preparation
for later courses.

• Chapter 17 on agents (closures, delegates) again goes beyond the usual scope of
introductory courses. This is so important to modern programming that in my opinion it
should be covered at least up to 17.4 (including illustrations through numerical
programming and iteration). I usually do not have the time to cover 17.6, a gentle
introduction to lambda calculus, but it should interest the more mathematically-oriented
students, if only as extra reading material.

• If you do cover agents, you should then reap the benefits by covering the application to
event-driven programming and especially GUI design (of interest to many students) in
chapter 18. This is a good opportunity to learn an important pattern, Observer. Our course
covers this and the previous chapter together, in four 45-minute lectures.

• Chapter 19 (introduction to software engineering) is not critical to an introductory
course and I have not had time so far to cover it (but we do have “software architecture”
and “software engineering” courses later in the curriculum). It is appropriate for an
audience that needs to be exposed to the issues of production-quality software
development in industry.

• The appendices are background material and I do not cover them, although some
instructors might want to devote some time to a language such as Java or C++ (we do
this, as noted, in specialized courses focusing on these languages).

A final note: while the course and the book were developed together, I always make a point
of devoting a couple of lectures in the course to a topic not covered in the book — to
introduce some spontaneity and avoid limiting the course to pre-packaged material. I like for
example to present the algorithm for Levenshtein distance (edit distance between two
strings), as it provides an outstanding example of the usefulness of loop invariants: without
the invariant the algorithm looks like magic, with the introduction of the invariant it becomes
limpid. Some of the extra material is available from the book site, touch.ethz.ch. (In the same
vein, I have found that the textbook is sufficiently detailed to allow me to use a “Socratic”
style for a couple of lectures in the semester: I ask the students to read a chapter in advance;
then I do not cover the material sequentially in class but just come and wait for questions.
Maybe this can work for other instructors as well.)

touch.ethz.ch

Contents

Community resources vii
Dedication ix
Prefaces xi
Student_preface xiii

Software everywhere xiii
Casual and professional software development xiv
Prior experience — or not xv
Modern software technology xvi
Object-oriented software construction xvii
Formal methods xvii
Learning by doing xviii
From the consumer to the producer xviii
Abstraction xix
Destination: quality xx

Instructor_preface xxiii
The challenges of a first course xxiii
Outside-in: the inverted curriculum xxvii

The supporting software xxviii
From programming to software engineering xxx
Terminology xxx

Technology choices xxxi
Object technology xxxi
Eiffel and Design by Contract xxxii
Why not Java? xxxiv

How formal? xxxviii
Other approaches xl
Topics covered xli
Acknowledgments xliii
Bibliography xlv

Note to instructors: what to cover? xlvii
Contents xlix

PART I: BASICS 1

1 The industry of pure ideas 3

1.1 Their machines and ours 3
1.2 The overall setup 6

The tasks of computers 6
General organization 7
Information and data 8
Computers everywhere 9
The stored-program computer 10

CONTENTSl

1.3 Key concepts learned in this chapter 12
New vocabulary 13

1-E Exercises 13
2 Dealing with objects 15

2.1 A class text 15
2.2 Objects and calls 18

Editing the text 18
Running your first program 20
Dissecting the program 23

2.3 What is an object? 25
Objects you can and cannot kick 25
Features, commands and queries 26
Objects as machines 28
Objects: a definition 29

2.4 Features with arguments 30
2.5 Key concepts learned in this chapter 32

New vocabulary 32
2-E Exercises 32

3 Program structure basics 35

3.1 Instructions and expressions 35
3.2 Syntax and semantics 36
3.3 Programming languages, natural languages 37
3.4 Grammar, constructs and specimens 39
3.5 Nesting and the syntax structure 40
3.6 Abstract syntax trees 41
3.7 Tokens and the lexical structure 43

Token categories 43
Levels of language description 44
Identifiers 44
Breaks and indentation 45

3.8 Key concepts learned in this chapter 46
3-E Exercises 46

4 The interface of a class 47

4.1 Interfaces 47
4.2 Classes 49
4.3 Using a class 51

Defining what makes a good class 51
A mini-requirements document 52
Initial ideas for classes 52
What characterizes a metro line 53

4.4 Queries 55
How long is this line? 55
Experimenting with queries 56
The stations of a line 57
Properties of start and end lines 59

4.5 Commands 59
Building a line 59

CONTENTS li

4.6 Contracts 61
Preconditions 61
Contracts for debugging 64
Contracts for interface documentation 65
Postconditions 65
Class invariants 67
Contracts: a definition 68

4.7 Key concepts learned in this chapter 68
4-E Exercises 69

5 Just Enough Logic 71

5.1 Boolean operations 72
Boolean values, variables, operators and expressions 72
Negation 73
Disjunction 74
Conjunction 75
Complex expressions 76
Truth assignment 77
Tautologies 78
Equivalence 79
De Morgan’s laws 81
Simplifying the notation 82

5.2 Implication 84
Definition 84
Relating to inference 85
Getting a practical feeling for implication 86
Reversing an implication 88

5.3 Semistrict boolean operators 89
Semistrict implication 94

5.4 Predicate calculus 94
Generalizing “or” and “and” 95
Precise definition: existentially quantified expression 96
Precise definition: universally quantified expression 97
The case of empty sets 99

5.5 Further reading 100
5.6 Key concepts learned in this chapter 101

New vocabulary 101
5-E Exercises 102

6 Creating objects and executing systems 107

6.1 Overall setup 108
6.2 Entities and objects 109
6.3 Void references 111

The initial state of a reference 111
The trouble with void references 112
Not every declaration should create an object 114
The role of void references 115
Calls in expressions: overcoming your fear of void 116

6.4 Creating simple objects 118
6.5 Creation procedures 122
6.6 Correctness of a creation instruction 126

CONTENTSlii

6.7 Memory management and garbage collection 128
6.8 System execution 130

Starting it all 130
The root class, the system and the design process 130
Specifying the root 131
The current object and general relativity 132
The ubiquity of calls: operator aliases 134
Object-oriented programming is relative programming 135

6.9 Appendix: getting rid of void calls 136
6.10 Key concepts learned in this chapter 137

New vocabulary 138
6-E Exercises 138

7 Control structures 139

7.1 Problem-solving structures 139
7.2 The notion of algorithm 141

Example 141
Precision and explicitness: algorithms vs recipes 142
Properties of an algorithm 143
Algorithms vs programs 144

7.3 Control structure basics 146
7.4 Sequence (compound instruction) 147

Examples 147
Compound: syntax 149
Compound: semantics 150
Order overspecification 151
Compound: correctness 152

7.5 Loops 153
Loops as approximations 154
The loop strategy 155
Loop instruction: basic syntax 157
Including the invariant 158
Loop instruction: correctness 159
Loop termination and the halting problem 161
Animating a metro line 166
Understanding and verifying the loop 169
The cursor and where it will go 173

7.6 Conditional instructions 174
Conditional: an example 175
Conditional structure and variations 176
Conditional: syntax 180
Conditional: semantics 181
Conditional: correctness 181

7.7 The lower level: branching instructions 181
Conditional and unconditional branching 182
The goto instruction 183
Flowcharts 184

7.8 Goto elimination and structured programming 185
Goto harmful? 185
Avoiding the goto 187
Structured programming 188

CONTENTS liii

The goto puts on a mask 189
7.9 Variations on basic control structures 191

Loop initialization 191
Other forms of loop 192
Multi-branch 195

7.10 An introduction to exception handling 200
The role of exceptions 200
A precise framework to discuss failures and exceptions 201
Retrying 202
Exception details 204
The try-catch style of exception handling 204
Two views of exceptions 204

7.11 Appendix: an example of goto removal 205
7.12 Further reading 207
7.13 Key concepts learned in this chapter 207

New vocabulary 208
7-E Exercises 208

8 Routines, functional abstraction and information hiding 211

8.1 Bottom-up and top-down reasoning 211
8.2 Routines as features 213
8.3 Encapsulating a functional abstraction 214
8.4 Anatomy of a routine declaration 215

Interface vs implementation 217
8.5 Information hiding 218
8.6 Procedures vs functions 219
8.7 Functional abstraction 220
8.8 Using routines 222
8.9 An application: proving the undecidability of the halting problem 223
8.10 Further reading 224
8.11 Key concepts learned in this chapter 225

New vocabulary 225
8-E Exercises 225

9 Variables, assignment and references 227

9.1 Assignment 228
Summing travel times 228
Local variables 231
Function results 234
Swapping two values 235
The power of assignment 235

9.2 Attributes 238
Fields, features, queries, functions, attributes 238
Assigning to an attribute 239
Information hiding: modifying fields 240
Information hiding: accessing fields 243

9.3 Kinds of feature 244
The client’s view 244
The supplier’s view 247
Setters and getters 248

CONTENTSliv

9.4 Entities and variables 249
Basic definitions 249
Variable and constant attributes 250

9.5 Reference assignment 252
Building metro stops 252
Building a metro line 254

9.6 Programming with references 256
References as a modeling tool 256
Using references for building linked structures 256
Void references 258
Reversing a linked structure 259
Making lists explicit 262
Where to use reference operations? 263
Dynamic aliasing 265

9.7 Key concepts learned in this chapter 268
New vocabulary 269
Precise feature terminology 269

9-E Exercises 269

PART II: HOW THINGS WORK 271

10 Just enough hardware 273

10.1 Encoding data 273
The binary number system 274
Binary basics 275
Basic representations and addresses 276
Powers of two 277
From cherries to bytes 277
Computing with numbers 279

10.2 More on memory 283
Persistence 283
Transient memory 284
Varieties of persistent memory 284
Registers and the memory hierarchy 287
Virtual memory 288

10.3 Computer instructions 288
10.4 Moore’s “law” and the evolution of computers 290
10.5 Further reading 291
10.6 Key concepts learned in this chapter 292

New vocabulary 293
10-E Exercises 293

11 Describing syntax 295

11.1 The role of BNF 295
Languages and their grammars 296
BNF basics 297
Distinguishing language from metalanguage 299

11.2 Productions 300
Concatenation 300
Choice 301
Repetition 301
Rules on grammars 303

CONTENTS lv

11.3 Using BNF 305
Applications of BNF 305
Language generated by a grammar 306
Recursive grammars 307

11.4 Describing abstract syntax 310
11.5 Turning a grammar into a parser 311
11.6 The lexical level and regular automata 311

Lexical constructs in BNF 311
Regular grammars 312
Finite automata 314
Context-free properties 316

11.7 Further reading 318
11.8 Key concepts learned in this chapter 318

New vocabulary 319
11-E Exercises 319

12 Programming languages and tools 321

12.1 programming language styles 322
Classification criteria 322
Functional programming and functional languages 324
Object-oriented languages 327

12.2 Compilation vs interpretation 330
Basic schemes 330
Combining compilation and interpretation 332
Virtual machines, bytecode and jitting 333

12.3 The essentials of a compiler 335
Compiler tasks 336
Fundamental data structures 337
Passes 337
The compiler as verification tool 338
Loading and linking 338
The runtime 339
Debuggers and execution tools 340

12.4 Verification and validation 341
12.5 Text, program and design editors 342
12.6 Configuration management 344

Varieties of configuration management 344
Build tools: from Make to automatic dependency analysis 345
Version control 347

12.7 Total project repositories 351
12.8 Browsing and documentation 352
12.9 Metrics 352
12.10 Integrated development environments 353
12.11 An IDE: EiffelStudio 353

Overall structure 354
Browsing and documentation 355
The melting ice technology 357

12.12 Key concepts introduced in this chapter 359
New vocabulary 360

12-E Exercises 360

CONTENTSlvi

PART III: ALGORITHMS AND DATA STRUCTURES 361

13 Fundamental data structures, genericity, and algorithm complexity 363

13.1 Static typing and genericity 363
Static typing 364
Static typing for container classes 364
Generic classes 365
Validity vs correctness 368
Classes vs types 369
Nesting generic derivations 370

13.2 Container operations 371
Queries 371
Commands 372
Standardizing feature names for basic operations 374
Automatic resizing 375

13.3 Estimating algorithm complexity 376
Measuring orders of magnitude 376
Mathematical basis 377
Making the best use of your lottery winnings 378
Abstract complexity in practice 379
Presenting data structures 379

13.4 Arrays 380
Bounds and indexes 381
Creating an array 382
Accessing and modifying array items 383
Bracket notation and assigner commands 384
Resizing an array 386
Using arrays 388
Performance of array operations 388

13.5 Tuples 389
13.6 Lists 391

Cursor queries 392
Cursor movement 395
Iterating over a list 396
Adding and removing items 398

13.7 Linked lists 400
Linked list basics 400
Insertion and removal 401
Reversing a linked list 403
Performance of linked list operations 406

13.8 Other list variants 408
Two-way lists 408
Abstraction and consequences 408
Arrayed lists 409
Multi-array lists 410

13.9 Hash tables 411
13.10 Dispensers 418
13.11 Stacks 420

Stack basics 420
Using stacks 421
Implementing stacks 424

CONTENTS lvii

13.12 Queues 428
13.13 Iterating on data structures 431
13.14 Other structures 432
13.15 Further reading 432
13.16 Key concepts learned in this chapter 433

New vocabulary 434
13-E Exercises 434

14 Recursion and trees 435

14.1 Basic examples 436
Recursive definitions 436
Recursively defined grammars 437
Recursively defined data structures 437
Recursively defined algorithms and routines 438

14.2 The tower of Hanoi 441
14.3 Recursion as a problem-solving strategy 446
14.4 Binary trees 447

A recursive routine on a recursive data structure 448
Children and parents 449
Recursive proofs 449
A binary tree of executions 450
More binary tree properties and terminology 451
Binary tree operations 452
Traversals 453
Binary search trees 454
Performance 455
Inserting, searching, deleting 456

14.5 Backtracking and alpha-beta 459
The plight of the shy tourist 459
Getting backtracking right 462
Backtracking and trees 463
Minimax 464
Alpha-beta 468

14.6 From loops to recursion 471
14.7 Making sense of recursion 473

Vicious circle? 473
Boutique cases of recursion 476
Keeping definitions non-creative 478
The bottom-up view of recursive definitions 479
Bottom-up interpretation of a construct definition 482
The towers, bottom-up 483
Grammars as recursively defined functions 484

14.8 Contracts for recursive routines 485
14.9 Implementation of recursive routines 486

A recursive scheme 487
Routines and their execution instances 487
Preserving and restoring the context 488
Using an explicit call stack 489
Recursion elimination essentials 491
Simplifying the iterative version 494
Tail recursion 496

CONTENTSlviii

Taking advantage of invertible functions 497
14.10 Key concepts learned in this chapter 500

New vocabulary 500
14-E Exercises 500

15 Devising and engineering an algorithm: Topological Sort 505

15.1 The problem 505
Example applications 506
Points in a plane 507

15.2 The basis for topological sort 509
Binary relations 509
Acyclic relations 510
Order relations 511
Order relations vs acyclic relations 512
Total orders 514
Acyclic relations have a topological sort 516

15.3 Practical considerations 517
Performance requirements 517
Class framework 518
Input and output 518
Overall form of the algorithm 519
Cycles in the constraints 520
Overall class organization 523

15.4 Basic algorithm 526
The loop 526
A “natural” choice of data structures 527
Performance analysis of the natural solution 528
Duplicating the information 529
Spicing up the class invariant 530
Numbering the elements 531
Basic operations 532
The candidates 533
The loop, final form 536
Initializations and their time performance 538
Putting everything together 541

15.5 Lessons 542
Interpretation vs compilation 542
Time-space tradeoffs 544
Algorithms vs systems and components 544

15.6 Key concepts learned in this chapter 545
New vocabulary 545

15.7 Appendix: terminology note on order relations 546
15-E Exercises 546

PART IV: OBJECT-ORIENTED TECHNIQUES 549

16 Inheritance 551

16.1 Taxis are vehicles 552
Inheriting features 552
Inheritance terms 554
Features from a higher authority 555
The flat view 556

CONTENTS lix

16.2 Polymorphism 557
Definitions 558
Polymorphism is not conversion 559
Polymorphic data structures 560

16.3 Dynamic binding 562
16.4 Typing and inheritance 563
16.5 Deferred classes and features 565
16.6 Redefinition 570
16.7 Beyond information hiding 573

Beware of choices bearing many cases 574
16.8 A peek at the implementation 575
16.9 What happens to contracts? 580

Invariant accumulation 581
Precondition weakening and postcondition strengthening 582
Contracts in deferred classes 585
Contracts tame inheritance 586

16.10 Overall inheritance structure 586
16.11 Multiple inheritance 588

Using multiple inheritance 588
Renaming features 590
From multiple to repeated inheritance 592

16.12 Genericity plus inheritance 594
Polymorphic data structures 594
Constrained genericity 596

16.13 Uncovering the actual type 599
The object test 602
Assignment attempt 604
Using dynamic casts wisely 605

16.14 Reversing the structure: visitors and agents 606
The dirty little secret 606
The Visitor pattern 608
Improving on Visitor 613

16.15 Further reading 613
16.16 Key concepts learned in this chapter 614

New vocabulary 615
16-E Exercises 616

17 Operations as objects: agents and lambda calculus 619

17.1 Beyond the duality 619
17.2 Why objectify operations? 621

Four applications of agents 621
A world without agents 623

17.3 Agents for iteration 627
Basic iterating schemes 627
Iterating for predicate calculus 628
Agent types 629
A home for fundamental iterators 631
Writing an iterator 631

17.4 Agents for numerical programming 634

CONTENTSlx

17.5 Open operands 636
Open arguments 636
Open targets 638

17.6 Lambda calculus 640
Operations on functions 640
Lambda expressions 641
Currying 643
Generalized currying 645
Currying in practice 645
The calculus 646
Lambda calculus and agents 651

17.7 Inline agents 652
17.8 Other language constructs 654

Agent-like mechanisms 655
Routines as arguments 656
Function pointers 656
Many Little Wrappers and nested classes 657

17.9 Further reading 658
17.10 Key concepts learned in this chapter 658

New vocabulary 659
17-E Exercises 660

18 Event-driven design 663

18.1 Event-driven GUI programming 664
Good old input 664
Modern interfaces 664

18.2 Terminology 666
Events, publishers and subscribers 666
Arguments and event types 668
Keeping the distinction clear 671
Contexts 673

18.3 Publish-subscribe requirements 674
Publishers and subscribers 674
The model and the view 675
Model-View-Controller 677

18.4 The observer pattern 678
About design patterns 678
Observer basics 679
The publisher side 679
The subscriber side 681
Publishing an event 684
Assessing the Observer pattern 684

18.5 Using agents: the event library 686
Basic API 686
Using event types 687
Event type implementation 689

18.6 Subscriber discipline 690
18.7 Software architecture lessons 691

Choosing the right abstractions 691
MVC revisited 692
The model as publisher 693

CONTENTS lxi

Invest then enjoy 694
Assessing software architectures 694

18.8 Further reading 695
18.9 Key concepts learned in this chapter 696

New vocabulary 697
18-E Exercises 697

PART V: TOWARDS SOFTWARE ENGINEERING 699

19 Introduction to software engineering 701

19.1 Basic definitions 702
19.2 The DIAMO view of software engineering 704
19.3 Components of quality 705

Process and product 705
Immediate product quality 707
Long-term product quality 708
Process quality 710
Tradeoffs 712

19.4 Major software development activities 712
19.5 Lifecycle models and agile development 714

The waterfall 714
The spiral model 715
The cluster model 716
Agile development 717

19.6 Requirements analysis 718
Products of the requirements phase 719
The IEEE standard 719
Scope of requirements 720
Obtaining requirements 720
The glossary 722
Machine properties and domain engineering 723
Fifteen properties of good requirements 724

19.7 Verification and validation 727
Varieties of quality assurance 728
Testing 728
Static techniques 732

19.8 Capability maturity models 735
CMMI scope 735
CMMI disciplines 736
Goals, practices and process areas 737
Two models 737
Assessment levels 738

19.9 Further reading 740
19.10 Key concepts learned in this chapter 742

New vocabulary 743
Acronym collection 743

19-E Exercises 743

PART VI: APPENDICES 745

A An introduction to Java (from material by Marco Piccioni) 747
A.1 Language background and style 747

CONTENTSlxii

A.2 Overall program structure 748
The Java Virtual Machine 748
Packages 748
Program execution 749

A.3 Basic object-oriented model 750
The Java type system 750
Classes and members 751
Information hiding 752
Static members 753
Abstract classes and interfaces 753
Overloading 754
Run-time model, object creation and initialization 755
Arrays 757
Exception handling 758

A.4 Inheritance and genericity 760
Inheritance 760
Redefinition 760
Polymorphism, dynamic binding and casts 761
Genericity 762

A.5 Further program structuring mechanisms 763
Conditional and branching instructions 763
Loops 765

A.6 Absent elements 766
Design by Contract 766
Multiple inheritance 766
Agents 766

A.7 Specific language features 767
Nested and anonymous classes 767
Type conversions 771
Enumerated types 771
Varargs 772
Annotations 772

A.8 Lexical and syntactic aspects 773
Keywords 774
Operators 774

A.9 Bibliography 774
B An introduction to C# (from material by Benjamin Morandi) 775

B.1 Language background and style 776
.NET, the CLI and language interoperability 776
The favorite son 777

B.2 Overall program structure 777
Classes and structs 777
Program execution 778

B.3 Basic object-oriented model 778
Static members and classes 778
Export status 779
Fields 779
Basic types 780
References and values 780
Constants 781
Methods 781

CONTENTS lxiii

Overloading 782
Properties 782
Constructors 783
Destructors 784
Operators 785
Arrays and indexers 786
Genericity 788
Basic statements 788
Control structures 789
Exception handling 790
Delegates and events 791

B.4 Inheritance 794
Inheriting from a class 794
You may only specify one parent class, here K. 794
Abstract members and classes 794
Interfaces 795
Accessibility and inheritance 796
Overriding and dynamic binding 796
Inheritance and creation 798
Run-Time Type Identification 798

B.5 Further program structuring mechanisms 799
Namespaces 799
Extension methods 800
Attributes 801

B.6 Absent elements 802
B.7 Specific language features 803

Unsafe code 803
Enumeration types 803
Linq 804

B.8 Lexical aspects 804
B.9 Bibliography 804

C An introduction to C++ (from material by Nadia Polikarpova) 805
C.1 Language background and style 805
C.2 Overall program organization 806
C.3 Basic object-oriented model 808

Built-in types 808
Derived types 808
Combining derived type mechanisms 812
User-defined types 812
Classes 813
Information hiding 816
Scoping 817
Operators 818
Overloading 818
Static declarations 818
Object lifetime 819
Initialization 821
Exception handling 822
Templates 823

C.4 Inheritance 825
Overriding 825

CONTENTSlxiv

Export status and inheritance 825
Precursor access 826
Static and dynamic binding 826
Pure virtual functions 827
Multiple inheritance 827
Inheritance and object creation 828

C.5 Further program structuring mechanisms 829
C.6 Absent elements 829

Contracts 829
Agents 830
Constrained genericity 830
Overall inheritance structure 831

C.7 Specific language features 831
Argument defaults 831
Nested classes 831

C.8 Libraries 831
C.9 Syntactic and lexical aspects 832

Instructions as expressions 832
Control structures 833
Assignment and assignment-like instructions 835
Expressions and operators 836
Identifiers 837
Literals 837
Keywords 838

C.10 Further reading 838
D From C++ to C 839

D.1 Absent elements 839
D.2 Language background and style 840
D.3 Further reading 842

E Using the EiffelStudio environment 843
E.1 Eiffelstudio basics 843
E.2 Setting up a project 844
E.3 Bringing up classes and views 845
E.4 Specifying a root class and creation procedure 845
E.5 Contract monitoring 846
E.6 Controlling execution and inspecting objects 846
E.7 Panic mode (not!) 846
E.8 To know more 846

Picture credits 847

Index 849

	Touch of Class
	Short contents
	Community resources
	Dedication
	Prefaces
	Student_preface
	Instructor_preface
	The supporting software
	From programming to software engineering
	Terminology
	Object technology
	Eiffel and Design by Contract
	Why not Java?

	Note to instructors: what to cover?
	Contents

