
A Self-Organized clustering scheme for overlay
networks

Francois Cantin, Bamba Gueye, Mohamed Ali Kaafar, Guy Leduc

University of Liege, Belgium
{francois.cantin, cabgueye, ma.kaafar, guy.leduc}@ulg.ac.be

Abstract. Hierarchical approaches, where nodes are clustered based on theirnet-
work distances, have been shown to allow for robust and scalable topology-aware
overlays. Moreover, recent research works have shown that cluster-based deploy-
ments of Internet Coordinates Systems (ICS), where nodes estimate both intra-
cluster and inter-cluster distances, do mitigate the impact of Triangle Inequality
Violations (TIVs) on the distance predictions, and hence offer more accurate in-
ternet latency estimations. To allow the construction of such useful clusters we
propose a self-organized distributed clustering scheme. For better scalability and
efficiency, our algorithm uses the coordinates of a subset of nodes, known by run-
ning an ICS system, as first approximations of node positions. We designed and
evaluated two variants of this algorithm. The first one, based on some cooperation
among nodes, aims at reducing the expected time to construct clusters. The sec-
ond variant, where nodes are selfish, aims at reducing the induced communication
overhead.
Keywords: ICS, Clustering, Triangle Inequality Violations, Performance.

1 Introduction

Recent years have seen the advent of Internet applications which are built upon and
benefit from topology-aware overlays. In particular, most if not all of these applica-
tions and associated overlays rely on the notion of network proximity, usually defined
in terms of network delays or round-trip times (RTTs), for optimal neighbor selection.
Recent research has focused on proposing elegant solutionsto the problem of proxim-
ity retrieval while avoiding algorithms that can prove to bevery onerous in terms of
measurement overheads, and significant bandwidth consumption (ping storms). In this
context, network positioning systems, such as [1,2], were introduced. The key idea is
that if each node can be associated with a “virtual” coordinate in an appropriate space,
distance between nodes can be trivially computed without the overhead of a direct mea-
surement. Despite the elegance from a theoretical perspective, these systems have some
practical limitations. In particular, Internet latenciesthat do violate triangle inequalities,
in the actual Internet [3], degrade both coordinates’ accuracy and stability [4,5].

Recent research works, however, have shown that shorter internet paths are less
likely victims of severe TIVs. Following these observations, in [5] we evaluated the
efficiency of a hierarchical approach for ICS. In this approach, nodes that are near
each other are clustered, and an independent ICS runs in eachcluster. These indepen-
dent ICS are used to estimate intra-cluster distances, whereas inter-cluster distances are

simply estimated by using an ICS involving all nodes. Since only short paths remain
inside the clusters, there are less TIVs in these subspaces.Consequently, the hierar-
chical ICS offers more accurate latency estimations for intra-cluster distances. More
generally, hierarchical overlay approaches, where nodes are clustered based on their
network distances, have been shown to allow for robust and scalable network-aware
overlays [6,7,8]. In such case, scalability is achieved by drastically reducing the band-
width requirements and management overhead for overlay maintenance. Moreover, ro-
bustness is obtained by mitigating the effect of dynamic environment as most changes
are quickly recovered and not seen beyond the clustered set of nodes.

In this paper we propose a self-organized clustering schemewhose goal is twofold.
Firstly we address the problem of constructing efficient clusters in an autonomous way
by building on an existing ICS system. Secondly our clustering scheme aims at pro-
viding a self-managed clustering structure to overlay-based applications, to allow both
topology awareness and scalability of these applications.The novelty of our approach
lies in simultaneously relying on the partial knowledge of coordinates of nodes involved
in ICS operations, and on a distributed clustering algorithm based on adaptive back-off
strategy, to construct efficient network topology-aware clusters in a load-balancing way.
The main idea is to allow each node to identify a set of clusters in the network, using
its own knowledge of a set of nodes’ coordinates (as providedby the ICS in which it is
involved), and to verify the validity of such clusters usinga few measurements towards
the identified cluster heads. The distributed algorithm is scheduled using an exponen-
tial back-off strategy, where nodes plan their own wake-up time to verify the existence
of clusters in their proximity or not. Our main objective behind this strategy is to load
balance the clustering process, while adapting to previousclusters creation, and hence
optimize the maintenance and measurements overhead.

We provide two variants of our distributed algorithm: a firstvariant, called “Coop-
erative”, aims at reducing the expected time to construct clusters for the whole network.
This approach induces some overhead to inform other nodes that they are likely to be-
long to a newly created cluster. A second “Selfish variant” isalso introduced, where
nodes are more selfish and can only form and/or join clusters when they wake up, with-
out any assistance (or guidance) from other nodes that woke up earlier. In both cases
nodes use only knowledge provided by a subset of other nodes,in some neighborhood
as explained later, and obtain the needed pieces of information (coordinates, existing
cluster heads) by piggybacking them in the messages exchanged by the ICS system.

We analyze the performance of our distributed self-clustering algorithm consider-
ing clusters efficiency in terms of actual latency existing between members of such
clusters, and considering their size. We also observe the time needed to construct effi-
cient clusters, and the induced overhead. By measuring bothexchanged messages and
measurement rates, we show that our distributed clusteringalgorithm is fit for purpose,
providing a simple, practical and efficient way to build useful topology-aware clusters.

The remainder of the paper is as follows: in section 2, we describe briefly the quality
threshold clustering algorithm on which we based our self-organized clustering scheme,
and we discuss the reasons that motivate the choice of such analgorithm. In section 3,
we introduce the proposed algorithm to allow nodes to identify clusters they belong
to. We also discuss the variants of our distributed algorithm, with their pros and cons.

Section 4 presents the clustering results in terms of achieved performance, induced
overhead and convergence time. Section 5 concludes the paper.

2 QT (Quality Threshold) clustering algorithm

Clustering is defined as a process of partitioning a set of elements into a number of
groups based on a measure of similarity between the data (distance-based approaches)
or relying on the assumption that the data come from a known distribution (model-based
approaches). For our self-clustering process, we aim at exploiting nodes’ coordinates as
a first approximation of the inter-node distances existing in the actual network topology.
As nodes’ coordinates do not follow any a priori distribution, we will focus on distance-
based clustering. Moreover, since we aim at providing a self-clustering process that is
performed in a distributed way among all the nodes of the network, the optimal num-
ber of clusters that can be created is not known in advance. Approaches that do set a
constraint on the number of clusters to be formed (such as K-means, C-Means Fuzzy
Clustering, etc.) are thus inappropriate.

Having in mind these facts, we choose to leverage the QualityThreshold algorithm
(QT clustering) to propose our self-organized clustering scheme. This algorithm has
been initially proposed by Heyer et al. [9] for genetic sequence clustering. It is based
on the unique constraint of the cluster diameter, as a user-defined parameter. For the
QT clustering and for the remainder of this paper we define the cluster diameter as the
maximal distance existing among any two members of the cluster. The QTclustering
is an iterative algorithm and starts with a global set that includes all the elements (e.g
node coordinates) of the data set, and then returns a set of clusters that respect the
quality threshold. Such threshold is defined in terms of the cluster diameter.

First, for each element, a candidate cluster seeded by this element is formed. Such
cluster is iteratively added by other elements. Each iteration adds the element that min-
imizes the increase in cluster diameter. The process continues until no element can be
added without surpassing the diameter threshold. A second candidate cluster is formed
by starting with the second element and repeating the procedure. Note that all elements
are made available to the second candidate cluster. That is,the elements from the first
candidate cluster are not removed from consideration. The process continues for all el-
ements. At the conclusion of this stage, we have a set of candidate clusters. The number
of candidate clusters is equal to the number of elements, andmany candidate clusters
overlap. At this point, the largest candidate cluster is selected and retained. The ele-
ments it contains are removed from consideration and the entire procedure is repeated
on the smaller set. A possible termination criterion is whenthe largest remaining cluster
has fewer elements than some specified threshold.

3 Self-Clustering process

In this section we describe how we exploit the QTclustering algorithm to provide
a distributed self-organized clustering process, based onthe knowledge of a subset of
nodes’ coordinates in a metric space, resulting from running a positioning system to
estimate network distances. We will denote by (direct) neighbors the set of peer nodes

that are used as neighbors in the ICS for the purpose of coordinate computation. We will
also denote bylong-sight neighbors, the union of these (direct) neighbors and the neigh-
bors’ neighbors (i.e., node’s 2-hop neighbors). For instance, if a node has32 neighbors
in order to estimate its coordinates, its long-sight neighbors will be formed by at most
1024 nodes.

3.1 Description

The general idea of our clustering algorithm is to distribute the clustering tasks
among nodes in the network relying not only on measurements towards a potential ex-
isting cluster, but also on their knowledge of the coordinates of their long-sight neigh-
bors. In other words, if a node wakes up (with respect to the clusters algorithm) and
does not find directly an existing cluster it may belong to, ittries to construct such clus-
ter based on the coordinates as provided by the ICS it is running. In such a way, nodes
that do wake up earlier try to create clusters that their peers waking up later may join.
Put simply, nodes perform trailblazing of the network conditions, to construct the clus-
ters in a distributed way, while optimizing the needed overhead. Three main advantages
could then be considered. Firstly nodes do not need global knowledge of nodes in the
network, nor distances between these nodes, nor a common landmark/anchor infras-
tructure. Secondly the network is not overloaded by measurements performed to obtain
the cluster structure. And thirdly the network is able to self-construct the clusters that
may exist.

During the cluster forming phase, nodes are initially in a waiting mode. Each node
waits for an initiator timer according to an exponential random distribution, computed
as described in section 3.2. The clustering process followsthe procedure presented in
Algorithm 1 and can be described as follows: each time a node wakes up, it gets the list
of existing cluster heads in the network. Although such information could be obtained
by requesting the set of long-sight neighbors that the node is aware of, we choose to
perform this information retrieval by exploiting the communication already established
at the level of the ICS. Existing cluster heads are propagated in the network by simply
piggybacking in the classical ICS messages the identity of the cluster head(s) of clus-
ter(s) a node belongs to. Considering these already existing clusters, each node verifies
its membership to one of them. If the measurement towards thecluster head satisfies
the cluster diameter, sayD, meaning that such distance is less thanD/2, the node sim-
ply joins such cluster by sending aJOIN message to the cluster head. Our previous
study [5] showed that when the cluster diameter does not exceed a fixed threshold (e.g
140ms), intra-cluster paths are less likely victims of severe TIVs. Following this obser-
vation, for our simulations, we set the upper bound of the cluster diameterD to 140ms.
Finding a way to adapt automatically this upper bound to the network is one of our fu-
ture work. Depending on the maximum number of clusters a nodecan join, sayk, such
procedure could be repeated with other cluster heads.

Nevertheless if none of the distances to existing cluster heads satisfies the clustering
criterion, the node starts the QT-clustering algorithm on the basis of the coordinates of
its long-sight neighbors. It is worth noticing that this clustering is just a first approxima-
tion. Indeed coordinates may be subject to distance estimations errors, resulting from
inaccuracies in coordinates. However this gives the node anapproximate view of its

Algorithm 1 Procedure when a node wakes up
1: if The node is already in at least one clusterthen
2: The node goes back to sleep;
3: else
4: The node gets the list of existing cluster heads (known by its long-sight neighbors);
5: The node measures RTTs to all existing cluster heads;
6: LetC be the list of existing cluster heads within a rangeRTT < D;
7: if C 6= ∅ then
8: The node joins at most thek nearest clusters whose heads are inC;
9: else

10: LetS be the list of coordinates of the node’s long-sight (1-hop and 2-hop) neighbors;
11: The node runs a QT-Clustering onS ⇒ This returns a set of clusters;
12: if The node is in none of these clustersthen
13: The node goes back to sleep;
14: else
15: The node selects a cluster head in its cluster;
16: The node measures the RTT to this new potential cluster head;
17: if RTT > D/2 then
18: The node goes back to sleep;
19: else
20: The node freezes all of its long-sight neighbors (by sending them amessage);
21: if A neighbor answers that it is already frozen by another nodethen
22: The node goes back to sleep;
23: else
24: After a short while the node notifies the selected cluster head and waits for

confirmation;
25: if Confirmation is positivethen
26: The node joins the cluster;
27: else
28: The node goes back to sleep;

neighbors positions, and in particular of the clusters thatcould be formed from this ap-
proximation. This first coordinate-based clustering phaseallows the node to identify a
set of clusters in the metric space of the ICS. This set of clusters is then subject to a
verification according to direct measurements.

When a node has verified that its distance to an identified cluster head satisfies
the clustering criterion, it decides to inform this potential cluster head that it should
create a cluster, and waits for a confirmation. The cluster creation is conditioned by the
acceptance of the requested cluster head. In fact, a potential cluster head could refuse
to lead a cluster because of load constraints, or more specifically because its actual
distance to an already existing cluster head has been considered too short. To this end,
when a node is informed that it is a potential cluster head, itmeasures its distance to the
list of cluster heads it is aware of. If at least one of these distances is less thanα×D/2,
for some1 < α < 2, distance between the two cluster heads is considered too short to
construct a new cluster, and the request is refused. In this case, the node that identifies
this cluster head is informed of this refusal and goes back tosleep. Otherwise, i.e. if the

cluster is created, nodes that wake up later follow this decision and consider the cluster
head among the list of existing cluster heads.

The algorithm relies on self-organization of nodes. When a node decides to join
a cluster, two variants could drive the process of nodes joining the identified clusters.
The first variant, with the main goal of speeding the clustering process, is to inform
all identified nodes in a cluster of their potential membership to such cluster, and let
them check this fact with direct measurements. The second variant trades off the speed
of cluster creation against a reduced measurement overhead. In this case nodes never
inform others that they may belong to a newly created cluster, and let them discover this
fact when they wake up.

Finally it is worth noticing that the wake-up procedure allows also some adapta-
tion to changes in the network. Since distances in the network may evolve over time,
including the distances of nodes towards their identified cluster head(s), a node should
not stick to any cluster, and should also verify its membership to additional clusters
due to new network conditions. Waking up from time to time, following the distributed
scheduling as presented in 3.2, allows them to check their membership to existing clus-
ters, and thereby adapt to changes in network conditions.

3.2 Distributed Scheduling of wake-up timers

During the cluster forming phase, nodes are initially in a waiting mode. Each node
waits for an initiator timer according to an exponential random distribution, i.e.f(ti) =
λi.e

−λi.ti , whereλi = λ0.(ni/Ni); ni being the number of non already clustered
nearby neighbors, andNi being the total number of known long-sight nearby neigh-
bors. By nearby nodes we refer to nodes whose coordinates indicate that they are
(likely to be) within some specified range. To set the timer according to an expo-
nential random distribution, we setpt = random(0,1), computeλi as described above
and let ti = (−1/λi).ln(1 − pt). The wake-up timer could then be computed as
timer = min(ti,MAX Timer). From the expression ofti it is obvious that the timer
decreases whenλi increases. Therefore such timer will ensure that the nodes with more
residual non-clustered neighbors have more opportunitiesto (re)initiate the clustering
algorithm, since their timer is more likely to elapse beforeother nodes. The main idea
behind this exponential backoff scheduling is to load-balance the clustering process as
initiated by nodes in the network, while optimizing the timeneeded to construct and
join the clusters.

We can also expect that in oneMAX Timer period enough nodes initiate the clus-
tering algorithm. To this end the selection ofλ should satisfy the following inequation:

Prob(t > MAX Timer) ≤ 1 − p

wherep is the expected percentage of nodes initiating the algorithm. Therefore, in such
a case

∫ +∞

MAX Timer

f(t)dt ≤ 1 − p => λ ≥ −(ln(1 − p)/MAX Timer)) (1)

Based on (1) we can calculateλ needed to ensure that a percentage of nodes initiate
the algorithm, at least in the initial state, when nodes are not clustered yet. From (1) we
can conclude thatλmin = −(ln(1 − p)/MAX Timer) is sufficient to ensure this.

4 Analyzing the Clusters

In this section we present the results of an extensive simulation study of the self-
organised clustering process. We performed a set of simulations using two datasets: the
p2psim data, a set of1740 nodes [10] andMeridian data, comprising2500 nodes [11]
to model Internet latencies based on real world measurements.

In our simulations, we allowed nodes to join at most two clusters (k = 2) and we set
the expected maximum cluster diameterD to 140ms for the King dataset and to 80ms
for the Meridian dataset, following recommendations in [5]. The maximal timer for a
sleeping node is set to 5 minutes and the minimum distance between any two cluster
heads is fixed to3/2 × D/2 (i.e. α = 3/2). As we used coordinates as provided by an
ICS in the first step of our self-organised clustering, we deployed the Vivaldi system [2]
as a prominent representative of purely P2P coordinate systems. Each node runs the Vi-
valdi system, setting the number of its neighbors to32 and our results are obtained for a
2-dimensional coordinate space. In [2], authors show that the more dimensions an Eu-
clidean space has, the more accurate the coordinates are. Similarly, the more neighbors
a node has, the more accurate the system is1. However, we choose not to illustrate our
results by using more accurate coordinates, for ease of deployment and low computing
loads, at the cost of some loss in clusters accuracy.

We evaluate the performance of our clustering algorithm with respect to three main
indicators. (i) The clusters quality: it is the deviation between the expected cluster di-
ameter and the actual diameter. (ii) The convergence time: it is the time needed by our
distributed algorithm to cluster95% of the nodes in the system. This allows us to differ-
entiate between the initial phase of the algorithm, when clusters are yet in the construc-
tion process, and the steady state, when nodes continue to manage their membership to
already constructed clusters. Finally, we measured (iii) The overhead: it is the number of
exchanged messages and the number of measurements performed. We can further split
the overhead during the initial phase and during the steady state. We compare the two
variants of our algorithm, and when needed we compare our distributed self-clustering
algorithm to a centralized approach. All algorithms used are implemented and evaluated
in R environment [12].

4.1 Clusters Quality

We can evaluate the cluster quality according to the deviation between the expected
cluster diameter, as we set it in the QTclustering and the actual diameter as obtained
after our self-organised clustering process reaches its steady state. However, the cluster
size is also an important parameter we should mention. A cluster populated with only a
few nodes, even though its diameter is optimal, may be of little use.

1 As shown in [5], the triangle inequality violations phenomena prevents a perfect mapping
between latency and coordinates, even for high-dimensional spaces.Coordinates are deemed
to be inaccurate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

C
D

F

RTT ms

Centralized variant
Cooperative variant

Selfish variant

(a) King dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

C
D

F

RTT ms

Centralized variant
Cooperative variant

Selfish variant

(b) Meridian dataset

Fig. 1. CDF of the RTT of the intra-cluster paths.

To evaluate the clustering quality in terms of cluster diameter, we observe in fig-
ures 1(a) and 1(b), the Cumulative Distribution of the actual delays (RTTs) between the
members of the same identified cluster (called intra-cluster RTTs). These figures show,
for both data sets, the proportion of nodes that actually violate the diameter constraint.
We compare the proportion of these violations for the two variants of our clustering
algorithm, and for a centralized approach. In this case, a centralized approach consists
in emulating a centralized entity that collects the coordinates of all nodes in the sys-
tem, computes in a centralized way clusters resulting from these coordinates using the
QT clustering and then informs all nodes of the identified cluster heads. These nodes
verify their membership to these clusters, and join clusters if the diameter constraint
with their cluster heads is verified. Otherwise, they are considered as outliers. The main
reason why we compare our algorithm to such a centralized algorithm is to evaluate how
partial knowledge of neighborhood and coordinates impact our clustering performance.

Figure 1(a) shows that more than85% of the intra-cluster links satisfy the cluster
diameter constraint, with an RTT less than the expected diameter. The same trend is
observed in Figure 1(b) for the Meridian dataset, with more than 95% of clustered
nodes scattered in delimited clusters, respecting the expected cluster diameter of 140ms.
We also note that both variants are achieving the same performance, which is actually
not surprising, since the main difference between our two variants is when nodes join a
cluster, and not how they join it. The centralized approach creates slightly more accurate
clusters. However, this little difference is overwhelmed by onerous cost induced by a
centralized approach that needs global knowledge of both coordinates and nodes in the
system.

Performing a QTclustering based on coordinates of long-sight neighbors gives us
a first approximation of nodes positioning. Even though nodes measure network dis-
tances, as RTTs, towards identified cluster heads, this doesnot prevent some mutual
distances between cluster members to be above the expected diameter, due to TIVs.
Using coordinates reduces the proportion of diameter violations, but since coordinates
“only” provide distance estimates, with intrinsic errors,errors may always exist.

As shown in Table 1, the number of clusters identified by our algorithm ranges from
9 to 11 for both variants. However, we can in both cases consider 3 main clusters, with
an average population of 700 nodes each for the King dataset,and1260 nodes as an

average population of each cluster in the Meridian dataset.The percentage of nodes
that have not been clustered are roughly3.8% of nodes existing in the system. The
bottom part of Table 1 will be presented later.

Cooperative VariantSelfish Variant
King Meridian King Meridian

Number of clusters 9 9 11 9
Number of outliers (unclustered nodes) 67 81 68 102
Total Number of pings 11116 17003 20125 18075
Total Number of messages (excluding pings) 1582 2300 843 246
Convergence time (seconds) 1875 1658 1658 2300
Ping rate before convergence (pings/s) 4.48 8.05 9.95 6.45
Mean ping rate before convergence (pings/node×s) 0.0026 0.003 0.0057 0.0026
Max ping rate before convergence (pings/node×s) 0.027 0.038 0.0398 0.023
Mean msg rate before convergence (msg/node×s) 0.0005 0.0006 0.0003 4 10

−5

Max msg rate before convergence (msg/node×s) 0.403 0.635 0.23 0.049
Mean ping rate after convergence (pings/node×s) 0.0002 0.0002 0.0002 0.0002
Max ping rate after convergence (pings/node×s) 0.03 0.032 0.034 0.022
Mean msg rate after convergence (msg/node×s) 10

−6
6 10

−7
3 10

−7
6 10

−7

Max msg rate after convergence (msg/node×s) 0.0007 0.0003 0.0002 0.0005
Table 1. Characteristics of the clustering process

4.2 Convergence time

To separate the initial phase from steady state, we analyze the evolution of the num-
ber of clustered nodes versus the number of awakenings (and hence versus the number
of clustering process calls) for both variants. As depictedin Figures 2(a) and 2(b), the
curves labeled “Selfish Variant” follow linear evolutions.Such observation is expected
since at most one node can join a cluster at each awakening, and then the growth of
the number of clustered nodes can be at best linear. Clustersin the “Cooperative” vari-
ant may cumulate node membership with each node’s awakening, because information
of potential membership to a newly created cluster is sent bythe creator of a cluster
to identified members. In the curves labeled “Cooperative approach”, we can then ob-
serve for both data sets the steps corresponding to a set of nodes joining simultaneously
a defined cluster. Such steps allow this variant to cluster more than 95% of nodes in
1210 awakenings for the King dataset and in 1854 awakenings for the Meridian dataset,
whereas the “Selfish” takes more occurrences, up to 2749 awakenings. Such faster clus-
tering comes at the expense of costs of spreading information and exchanged messages,
we will discuss in the following section.

Let us consider that our system is in the steady state if at least 95% of existing
nodes have been clustered. Although such parameter relies on our a priori knowledge
of the number of outliers in the system, and hence on the minimum number of nodes
that can be clustered, it gives us however a suitable way to separate the initial phase
from the steady state. It is important to notice that the convergence time, although dif-
ferent in terms of number of awakenings, is roughly the same in real time (in seconds)
spent to cluster 95% of the nodes, as shown in table 1. This confirms our choice of the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000 2500

nu
m

be
r o

f n
od

es
 c

lu
st

er
ed

number of awakening

Cooperative variant
Selfish variant

(a) King dataset

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r o

f n
od

es
 c

lu
st

er
ed

number of awakening

Cooperative variant
Selfish variant

(b) Meridian dataset

Fig. 2. Evolution of the number of clustered nodes

exponential-backoff strategy to set timers. Recall from section 3.2, that our algorithm
will ensure that the greater theλ, the lower the timer, giving hence more opportunity
to (re)initiate the clustering algorithm. This guaranteesa higher probability to initiate
the clustering algorithm in a “area” populated by nodes thathave not been clustered
yet. This gives a way to adjust the awakening rate according to the number of clustered
nodes independently from the number of nodes existing in thesystem. Such trend is
emphasized in the “Cooperative variant” where the convergence time is less than 2000
seconds for both data sets. Next we discuss the cost of the self-clustering algorithm.

4.3 Overhead

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

nu
m

be
r o

f m
sg

s

hours

Cooperative variant Meridian
Cooperative variant King

Selfish variant King
Selfish variant Meridian

(a) Cumulative number of exchanged messages

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

nu
m

be
r o

f p
in

gs

hours

Selfish variant King
Selfish variant Meridian

Cooperative variant Meridian
Cooperative variant King

(b) Cumulative number of performed measure-
ments

Fig. 3. Induced Overhead: exchanged messages and performed measurements

To observe the control messages and measurement overhead, we differentiate be-
tween the two states of the system: the initial phase (when clusters are built) and the
steady state. We observe the induced overhead as the number of measurements per-
formed, but also as the number of exchanged messages during the clustering process.
Figure 3(a) depicts the cumulative number of exchanged messages versus time (up to

one hour). We do not consider theJOIN messages sent by clustered nodes to their
cluster heads, but focus on the difference that may exist between the two variants of the
algorithm.

The sharp rise of the curves in the initial phase is due to the fact that, at the be-
ginning of the algorithm, nodes have the same probability towake-up, since all nearby
neighbors are not clustered yet. We manage to resolve such potential conflictual situa-
tion using the Freeze messages, sent to the long-sight neighbors, when a node identifies
a cluster head, and waits for its confirmation. We are more likely to encounter such
situations at the beginning of the algorithm. Moreover as very few nodes are clustered
in the initial phase, more clusters are created, leading to more exchanged messages and
measurements.

We can observe from figure 3(a) that, as expected, the cumulative number of mes-
sages by the “Selfish variant” is less important than the “Cooperative variant”. It is
however important to observe that the number of exchanged messages induced by newly
created clusters is very low after the initial phase. Once the system reaches the steady
state, no more messages, are exchanged. The low message exchange rate observed dur-
ing the initial phase is confirmed by our results in table 1 with very low message rates
of the scale of10−4 per node per second as average values, and a maximum of 0.635
message/node×second.

In figure 3(b) we observe the cumulative number of measurements performed to-
wards the identified cluster heads (typically ping messages). We see again that the ma-
jor overhead is induced during the initial phase. We observemore pings initially, when
nodes initiate their clustering process, with a maximum ping rate of 0.034 ping/node×
second. Such very low overall ping rate per node is promisingfor large scale deploy-
ment of our clustering scheme.

5 Conclusion

We have presented a distributed self-organized clusteringprocess suitable for both
ICS accuracy enhancement, and scalable network-aware overlay deployment. We have
shown that, although ICS systems suffer from inaccuracies resulting from triangle in-
equality violations in the Internet, they can be exploited to construct efficient clustering
schemes in a distributed way. Indeed, the proposed clustering process is based on a first
approximation of node positioning using coordinates, along with an adaptive back-off
strategy that allows load-balanced construction of clusters. We also present two vari-
ants of such clustering process that trade off the convergence time against the induced
overhead. However, the two variants have been shown to be effective, enjoying good
clustering performance, while achieving a very good trade-off between scalability and
convergence time. Indeed, nodes are able to identify and join their clusters in a reason-
able amount of time, while rarely violating the diameter constraints, and they still do
not trigger too frequent measurements.

Although this paper focused on Vivaldi for distance estimates and experimentations,
the algorithm proposed for clustering is independent of thecoordinate system used.
Our proposed scheme would then be general enough to be applied in the context of
coordinates computed by any Internet coordinate systems.

The reader should note though, that we do not yet consider churn situations, when
nodes join and leave the system running the Internet Coordinate System in an asyn-
chronous way. If we consider highly-dynamic networks, the differentiation between the
initial phase and the steady state may fade away. However, our clustering process would
adapt to situations when only few nodes are existing in the system, by simply not cre-
ating clusters if they are “useless”. Basically, by settinga minimum number of nodes
per cluster at the level of the QTclustering, low populated clusters could be avoided.
It is also important to note that in churn situations, ping and message rates would be
moderate, and that considering a non-dynamic network in oursimulations gives us a
worst-case of the cost of the system, at least in its initial phase. Finally, even though
this paper does not address the problem of clusters maintenance, we note that differ-
ent solutions to such issues have been proposed elsewhere (e.g. [13]). Our future work
would then consist in integrating such maintenance techniques in our distributed clus-
tering scheme.

References

1. T. S. E. Ng and H. Zhang, “Predicting Internet network distance with coordinates-based
approaches,” inProc. IEEE INFOCOM, New York, NY, USA, June 2002.

2. F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized network coordinate
system,” inProc. ACM SIGCOMM, Portland, OR, USA, Aug. 2004.

3. H. Zheng, E. K. Lua, M. Pias, and T. Griffin, “Internet Routing Policies and Round-Trip-
Times,” inProc. the PAM Conference, Boston, MA, USA, Apr. 2005.

4. E. K. Lua and T. Griffin, “Embeddable overlay networks,” inIEEE Symposium on Computers
and Communications, Aveiro, Portugal, 2007.

5. M. A. Kaafar, B. Gueye, F. Cantin, G. Leduc, and L. Mathy, “Towards a two-tier internet
coordinate system to mitigate the impact of triangle inequality violations,” inProc. IFIP
Networking Conference, Singapore, May 2008, LNCS 4982, pp. 397–408.

6. E. K. Lua, X. Zhou, J. Crowcroft, and P. V. Mieghem, “Scalable multicasting with network-
aware geometric overlay,”Comput. Commun., vol. 31, no. 3, pp. 464–488, 2008.

7. Y. He, Q. Zhao, J. Zhang, and G. Wu, “Topology-aware multi-cluster architecture based on
efficient index techniques,” inNPC, 2005, LNCS 3779, pp. 163–171.

8. G. Xue, Y. Jiang, Y. You, and M. Li, “A topology-aware hierarchical structured overlay
network based on locality sensitive hashing scheme,” inUPGRADE, New York, NY, USA,
2007, pp. 3–8, ACM.

9. L. J. Heyer, S. Kruglyak, and S. Yooseph, “Exploring expression data: Identification and
analysis of coexpressed genes,”Genome Research, vol. 9, no. 11, pp. 1106–1115, nov 1999.

10. A simulator for peer-to-peer protocols, http://www.pdos.lcs.mit.edu/p2psim/
index.html.

11. B. Wong, A. Slivkins, and E. Sirer, “Meridian: A lightweight networklocation service with-
out virtual coordinates,” inProc. the ACM SIGCOMM, aug 2005.

12. R Development Core Team,R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2008, ISBN 3-900051-07-0.

13. X. Liu, J. Lan, P. Shenoy, and K. Ramaritham, “Consistency maintenance in dynamic peer-
to-peer overlay networks,”Comput. Netw., vol. 50, no. 6, pp. 859–876, 2006.

