A Self-Organized clustering scheme for overlay
networks

Francois Cantin, Bamba Gueye, Mohamed Ali Kaafar, Guy Leduc

University of Liege, Belgium
{francoi s. cantin, cabgueye, ma.kaafar, guy.|educ}@ilg.ac.be

Abstract. Hierarchical approaches, where nodes are clustered based ametieir
work distances, have been shown to allow for robust and scalable tppaleare
overlays. Moreover, recent research works have shown thaeclbased deploy-
ments of Internet Coordinates Systeri8S), where nodes estimate both intra-
cluster and inter-cluster distances, do mitigate the impact of Triangle &figqu
Violations (TIVs) on the distance predictions, and hence offer more accurate in-
ternet latency estimations. To allow the construction of such useful ciuster
propose a self-organized distributed clustering scheme. For bettebiticaand
efficiency, our algorithm uses the coordinates of a subset of nodesykby run-
ning an ICS system, as first approximations of node positions. We dssamd
evaluated two variants of this algorithm. The first one, based on sonpei®mn
among nodes, aims at reducing the expected time to construct cludterse@-
ond variant, where nodes are selfish, aims at reducing the inducedwunation
overhead.

Keywords: ICS, Clustering, Triangle Inequality Violations, Performance.

1 Introduction

Recent years have seen the advent of Internet applicatibich\are built upon and
benefit from topology-aware overlays. In particular, mdstat all of these applica-
tions and associated overlays rely on the notion of netwookimity, usually defined
in terms of network delays or round-trip times (RTTs), fotiofal neighbor selection.
Recent research has focused on proposing elegant soltidims problem of proxim-
ity retrieval while avoiding algorithms that can prove to\®ry onerous in terms of
measurement overheads, and significant bandwidth congmping storms). In this
context, network positioning systems, such as [1,2], wet®duced. The key idea is
that if each node can be associated with a “virtual” coordifi@an appropriate space,
distance between nodes can be trivially computed withaubtterhead of a direct mea-
surement. Despite the elegance from a theoretical pergpgitiese systems have some
practical limitations. In particular, Internet latenctbat do violate triangle inequalities,
in the actual Internet [3], degrade both coordinates’ amcyiand stability [4,5].

Recent research works, however, have shown that shoremnettpaths are less
likely victims of severe TIVs. Following these observasoin [5] we evaluated the
efficiency of a hierarchical approach for ICS. In this appiganodes that are near
each other are clustered, and an independent ICS runs irckestlr. These indepen-
dent ICS are used to estimate intra-cluster distances eahénter-cluster distances are

simply estimated by using an ICS involving all nodes. Sinoly ghort paths remain

inside the clusters, there are less TIVs in these subsp@oesequently, the hierar-
chical ICS offers more accurate latency estimations falahstuster distances. More
generally, hierarchical overlay approaches, where nodeslastered based on their
network distances, have been shown to allow for robust aathlsie network-aware

overlays [6,7,8]. In such case, scalability is achieved tastically reducing the band-
width requirements and management overhead for overlagterance. Moreover, ro-
bustness is obtained by mitigating the effect of dynamidrenment as most changes
are quickly recovered and not seen beyond the clustered setles.

In this paper we propose a self-organized clustering schvémose goal is twofold.
Firstly we address the problem of constructing efficienstdis in an autonomous way
by building on an existing ICS system. Secondly our clusgegcheme aims at pro-
viding a self-managed clustering structure to overlayedagpplications, to allow both
topology awareness and scalability of these applicatibhe.novelty of our approach
lies in simultaneously relying on the partial knowledge @binates of nodes involved
in ICS operations, and on a distributed clustering algorilased on adaptive back-off
strategy, to construct efficient network topology-awatestgrs in a load-balancing way.
The main idea is to allow each node to identify a set of clgsierthe network, using
its own knowledge of a set of hodes’ coordinates (as provijetthe ICS in which it is
involved), and to verify the validity of such clusters usenfew measurements towards
the identified cluster heads. The distributed algorithnrigesluled using an exponen-
tial back-off strategy, where nodes plan their own wakehue to verify the existence
of clusters in their proximity or not. Our main objective lrdhthis strategy is to load
balance the clustering process, while adapting to prewitusters creation, and hence
optimize the maintenance and measurements overhead.

We provide two variants of our distributed algorithm: a firatiant, called “Coop-
erative”, aims at reducing the expected time to construrstets for the whole network.
This approach induces some overhead to inform other nodéshisy are likely to be-
long to a newly created cluster. A second “Selfish varian®l&o introduced, where
nodes are more selfish and can only form and/or join clustheswthey wake up, with-
out any assistance (or guidance) from other nodes that wpleadlier. In both cases
nodes use only knowledge provided by a subset of other nadsesme neighborhood
as explained later, and obtain the needed pieces of infamé&toordinates, existing
cluster heads) by piggybacking them in the messages exetidngthe ICS system.

We analyze the performance of our distributed self-clustealgorithm consider-
ing clusters efficiency in terms of actual latency existirgween members of such
clusters, and considering their size. We also observe itie ieeded to construct effi-
cient clusters, and the induced overhead. By measuringeéatitanged messages and
measurement rates, we show that our distributed clustatgayithm is fit for purpose,
providing a simple, practical and efficient way to build usébpology-aware clusters.

The remainder of the paper is as follows: in section 2, werilesbriefly the quality
threshold clustering algorithm on which we based our sej&nized clustering scheme,
and we discuss the reasons that motivate the choice of sualgarithm. In section 3,
we introduce the proposed algorithm to allow nodes to ifemiusters they belong
to. We also discuss the variants of our distributed algorjtivith their pros and cons.

Section 4 presents the clustering results in terms of aetigerformance, induced
overhead and convergence time. Section 5 concludes the pape

2 QT (Quality Threshold) clustering algorithm

Clustering is defined as a process of partitioning a set ofetes into a number of
groups based on a measure of similarity between the dataridesbased approaches)
or relying on the assumption that the data come from a knosiblition (model-based
approaches). For our self-clustering process, we aim dbitixig nodes’ coordinates as
a first approximation of the inter-node distances existimttpé actual network topology.
As nodes’ coordinates do not follow any a priori distributiave will focus on distance-
based clustering. Moreover, since we aim at providing acdatering process that is
performed in a distributed way among all the nodes of the odtwthe optimal num-
ber of clusters that can be created is not known in advancpro@ghes that do set a
constraint on the number of clusters to be formed (such aKnas, C-Means Fuzzy
Clustering, etc.) are thus inappropriate.

Having in mind these facts, we choose to leverage the QuEtitgshold algorithm
(QT_clustering) to propose our self-organized clustering scheme. Thisrilgn has
been initially proposed by Heyer et al. [9] for genetic semeeclustering. It is based
on the unique constraint of the cluster diameter, as a usaratl parameter. For the
QT _clustering and for the remainder of this paper we define thstet diameter as the
maximal distance existing among any two members of thealushe QTclustering
is an iterative algorithm and starts with a global set thalides all the element®.§
node coordinates) of the data set, and then returns a seusibrd that respect the
quality threshold. Such threshold is defined in terms of thster diameter.

First, for each element, a candidate cluster seeded bylérseat is formed. Such
cluster is iteratively added by other elements. Each itaratdds the element that min-
imizes the increase in cluster diameter. The process a@#iantil no element can be
added without surpassing the diameter threshold. A secandidate cluster is formed
by starting with the second element and repeating the puwveeblote that all elements
are made available to the second candidate cluster. Thatiglements from the first
candidate cluster are not removed from consideration. Tbegss continues for all el-
ements. At the conclusion of this stage, we have a set of datedclusters. The number
of candidate clusters is equal to the number of elementspary candidate clusters
overlap. At this point, the largest candidate cluster ieceld and retained. The ele-
ments it contains are removed from consideration and thieegmbcedure is repeated
on the smaller set. A possible termination criterion is wirenlargest remaining cluster
has fewer elements than some specified threshold.

3 Sef-Clustering process

In this section we describe how we exploit the Qllistering algorithm to provide
a distributed self-organized clustering process, baseth@knowledge of a subset of
nodes’ coordinates in a metric space, resulting from run@irpositioning system to
estimate network distances. We will denote by (direct) nleggs the set of peer nodes

that are used as neighbors in the ICS for the purpose of qatricomputation. We will
also denote bjong-sight neighbors, the union of these (direct) neighbors and thghrei
bors’ neighbors (i.e., node’s 2-hop neighbors). For insaif a node ha82 neighbors
in order to estimate its coordinates, its long-sight neggblwill be formed by at most
1024 nodes.

3.1 Description

The general idea of our clustering algorithm is to distrébthe clustering tasks
among nodes in the network relying not only on measurementartls a potential ex-
isting cluster, but also on their knowledge of the coordisaif their long-sight neigh-
bors. In other words, if a node wakes up (with respect to thetets algorithm) and
does not find directly an existing cluster it may belong ttrjéts to construct such clus-
ter based on the coordinates as provided by the ICS it is mgnihi such a way, nodes
that do wake up earlier try to create clusters that theirgeking up later may join.
Put simply, nodes perform trailblazing of the network cdiadis, to construct the clus-
ters in a distributed way, while optimizing the needed oearh Three main advantages
could then be considered. Firstly nodes do not need glolakletige of nodes in the
network, nor distances between these nodes, nor a commdméak/anchor infras-
tructure. Secondly the network is not overloaded by measenés performed to obtain
the cluster structure. And thirdly the network is able td-sehstruct the clusters that
may exist.

During the cluster forming phase, nodes are initially in awwg mode. Each node
waits for an initiator timer according to an exponentialdam distribution, computed
as described in section 3.2. The clustering process foltbeprocedure presented in
Algorithm 1 and can be described as follows: each time a nadesvup, it gets the list
of existing cluster heads in the network. Although suchrimfation could be obtained
by requesting the set of long-sight neighbors that the nsdaviare of, we choose to
perform this information retrieval by exploiting the comnication already established
at the level of the ICS. Existing cluster heads are propagatéhe network by simply
piggybacking in the classical ICS messages the identithefctuster head(s) of clus-
ter(s) a node belongs to. Considering these already exishirsters, each node verifies
its membership to one of them. If the measurement towardsltister head satisfies
the cluster diameter, sdy, meaning that such distance is less ttigf2, the node sim-
ply joins such cluster by sending. 8D N message to the cluster head. Our previous
study [5] showed that when the cluster diameter does noeekadixed thresholde(g
140ms), intra-cluster paths are less likely victims of sevEVs. Following this obser-
vation, for our simulations, we set the upper bound of theteludiameteD to 140ms.
Finding a way to adapt automatically this upper bound to #tevark is one of our fu-
ture work. Depending on the maximum number of clusters a wadgoin, say, such
procedure could be repeated with other cluster heads.

Nevertheless if none of the distances to existing clustedfeatisfies the clustering
criterion, the node starts the QT-clustering algorithmimnhasis of the coordinates of
its long-sight neighbors. It is worth noticing that thissfiering is just a first approxima-
tion. Indeed coordinates may be subject to distance estinsaérrors, resulting from
inaccuracies in coordinates. However this gives the nodapgmoximate view of its

Algorithm 1 Procedure when a node wakes up
1: if The node is already in at least one clusten
2 The node goes back to sleep;
3 dse
4: The node gets the list of existing cluster heads (known by its long-sa&igihbors);
5. The node measures RTTSs to all existing cluster heads;
6:
7
8

Let C be the list of existing cluster heads within a rafg€7T" < D;

if C # 0 then
: The node joins at most thenearest clusters whose heads ar€'jn
9: ese

10: Let.S be the list of coordinates of the node’s long-sight (1-hop and 2-heighbors;

11: The node runs a QT-Clustering Sn= This returns a set of clusters;

12: if The node is in none of these clusténen

13: The node goes back to sleep;

14: else

15: The node selects a cluster head in its cluster;

16: The node measures the RTT to this new potential cluster head;

17: if RTT > D/2 then

18: The node goes back to sleep;

19: ese

20: The node freezes all of its long-sight neighbors (by sending themssage);

21: if A neighbor answers that it is already frozen by another rthde

22: The node goes back to sleep;

23: else

24: After a short while the node notifies the selected cluster head and waits f
confirmation;

25: if Confirmation is positivéhen

26: The node joins the cluster;

27: else

28: The node goes back to sleep;

neighbors positions, and in particular of the clusters toatd be formed from this ap-
proximation. This first coordinate-based clustering phrelk®vs the node to identify a
set of clusters in the metric space of the ICS. This set oftetads then subject to a
verification according to direct measurements.

When a node has verified that its distance to an identified erlustad satisfies
the clustering criterion, it decides to inform this potahttluster head that it should
create a cluster, and waits for a confirmation. The clusesatern is conditioned by the
acceptance of the requested cluster head. In fact, a paltehtster head could refuse
to lead a cluster because of load constraints, or more spabifbecause its actual
distance to an already existing cluster head has been evaditbo short. To this end,
when a node is informed that it is a potential cluster headeisures its distance to the
list of cluster heads it is aware of. If at least one of thestadlices is less thanx D/2,
for somel < « < 2, distance between the two cluster heads is considered twbtsh
construct a new cluster, and the request is refused. In &isis, the node that identifies
this cluster head is informed of this refusal and goes basletep. Otherwise, i.e. if the

cluster is created, nodes that wake up later follow thisgdeciand consider the cluster
head among the list of existing cluster heads.

The algorithm relies on self-organization of nodes. When dendecides to join
a cluster, two variants could drive the process of nodesrjgithe identified clusters.
The first variant, with the main goal of speeding the clustgrocess, is to inform
all identified nodes in a cluster of their potential membagrsh such cluster, and let
them check this fact with direct measurements. The secarghtdrades off the speed
of cluster creation against a reduced measurement overhlretids case nodes never
inform others that they may belong to a newly created cluatet let them discover this
fact when they wake up.

Finally it is worth noticing that the wake-up procedure aioalso some adapta-
tion to changes in the network. Since distances in the n&tway evolve over time,
including the distances of nodes towards their identifiedtelr head(s), a node should
not stick to any cluster, and should also verify its membierétn additional clusters
due to new network conditions. Waking up from time to timéldi@ing the distributed
scheduling as presented in 3.2, allows them to check theirmeeship to existing clus-
ters, and thereby adapt to changes in network conditions.

3.2 Distributed Scheduling of wake-up timers

During the cluster forming phase, nodes are initially in awg mode. Each node
waits for an initiator timer according to an exponentialdam distribution, i.ef(¢;) =
Ni.e~ti where)\; = \g.(n;/N;); n; being the number of non already clustered
nearby neighbors, ani¥; being the total number of known long-sight nearby neigh-
bors. By nearby nodes we refer to nodes whose coordinatésatadthat they are
(likely to be) within some specified range. To set the timeroading to an expo-
nential random distribution, we sgt = random(0,1), computg; as described above
and lett; = (—1/X;).In(1 — p;). The wake-up timer could then be computed as
timer = min(t;, M AX Timer). From the expression of it is obvious that the timer
decreases whexy increases. Therefore such timer will ensure that the nodtbswore
residual non-clustered neighbors have more opporturiiti€ee)initiate the clustering
algorithm, since their timer is more likely to elapse befotieer nodes. The main idea
behind this exponential backoff scheduling is to load-bedathe clustering process as
initiated by nodes in the network, while optimizing the timeeded to construct and
join the clusters.

We can also expect that in ofdié AX _Timer period enough nodes initiate the clus-
tering algorithm. To this end the selection)oghould satisfy the following inequation:

Prob(t > MAX Timer) <1—p

wherep is the expected percentage of nodes initiating the algarittherefore, in such
a case

—+oo
/ ft)dt <1—p=> > —(in(l — p)/MAX Timer)) (1)
MAX Timer

Based on (1) we can calculatemeeded to ensure that a percentage of nodes initiate
the algorithm, at least in the initial state, when nodes atelustered yet. From (1) we
can conclude thak,,,;, = —(In(1 — p)/M AX ‘Timer) is sufficient to ensure this.

4 Analyzing the Clusters

In this section we present the results of an extensive siounlatudy of the self-
organised clustering process. We performed a set of siranfatising two datasets: the
p2psim data, a set 0of 740 nodes [10] andMeridian data, comprisin@500 nodes [11]
to model Internet latencies based on real world measurement

In our simulations, we allowed nodes to join at most two @uste = 2) and we set
the expected maximum cluster diameifeto 140ms for the King dataset and to 80ms
for the Meridian dataset, following recommendations in [Bje maximal timer for a
sleeping node is set to 5 minutes and the minimum distaneeeket any two cluster
heads is fixed t8/2 x D/2 (i.e. « = 3/2). As we used coordinates as provided by an
ICS in the first step of our self-organised clustering, weldygd the Vivaldi system [2]
as a prominent representative of purely P2P coordinatemsgstEach node runs the Vi-
valdi system, setting the number of its neighbor82@nd our results are obtained for a
2-dimensional coordinate space. In [2], authors show tiatiore dimensions an Eu-
clidean space has, the more accurate the coordinates auitarj, the more neighbors
a node has, the more accurate the systénHewever, we choose not to illustrate our
results by using more accurate coordinates, for ease obyimeint and low computing
loads, at the cost of some loss in clusters accuracy.

We evaluate the performance of our clustering algorithnhwespect to three main
indicators. (i) The clusters quality: it is the deviationtlween the expected cluster di-
ameter and the actual diameter. (ii) The convergence tinethe time needed by our
distributed algorithm to clusté®5% of the nodes in the system. This allows us to differ-
entiate between the initial phase of the algorithm, whestels are yet in the construc-
tion process, and the steady state, when nodes continuetagasheir membership to
already constructed clusters. Finally, we measured (ii§ dverhead: it is the number of
exchanged messages and the number of measurements perfevenean further split
the overhead during the initial phase and during the stetadg.dMe compare the two
variants of our algorithm, and when needed we compare otritdited self-clustering
algorithm to a centralized approach. All algorithms usedimplemented and evaluated
in Renvironment [12].

4.1 ClustersQuality

We can evaluate the cluster quality according to the dendietween the expected
cluster diameter, as we set it in the @lustering and the actual diameter as obtained
after our self-organised clustering process reachesitglgtstate. However, the cluster
size is also an important parameter we should mention. Aeflpopulated with only a
few nodes, even though its diameter is optimal, may be & litse.

1 As shown in [5], the triangle inequality violations phenomena prevents feqtenapping
between latency and coordinates, even for high-dimensional spageslinates are deemed
to be inaccurate.

CDF
CDF

Centralized variant --—--—--- Centralized variant ---=----
Cooperative variant - I Cooperative variant - 1
Selfish variant s ¥ Selfish variant

o 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
RTT ms RTT ms

(a) King dataset (b) Meridian dataset

Fig. 1. CDF of the RTT of the intra-cluster paths.

To evaluate the clustering quality in terms of cluster ditenewve observe in fig-
ures 1(a) and 1(b), the Cumulative Distribution of the alotiedays (RTTs) between the
members of the same identified cluster (called intra-ctUsTa's). These figures show,
for both data sets, the proportion of nodes that actualliatéahe diameter constraint.
We compare the proportion of these violations for the twadards of our clustering
algorithm, and for a centralized approach. In this casep&raézed approach consists
in emulating a centralized entity that collects the cocaiths of all nodes in the sys-
tem, computes in a centralized way clusters resulting filoese coordinates using the
QT _clustering and then informs all nodes of the identified eusieads. These nodes
verify their membership to these clusters, and join clssiethe diameter constraint
with their cluster heads is verified. Otherwise, they aresttered as outliers. The main
reason why we compare our algorithm to such a centralizestithign is to evaluate how
partial knowledge of neighborhood and coordinates impacthstering performance.

Figure 1(a) shows that more th&a% of the intra-cluster links satisfy the cluster
diameter constraint, with an RTT less than the expected eteamThe same trend is
observed in Figure 1(b) for the Meridian dataset, with mdr@nt95% of clustered
nodes scattered in delimited clusters, respecting thectgeluster diameter of 140ms.
We also note that both variants are achieving the same paafare, which is actually
not surprising, since the main difference between our twimwés is when nodes join a
cluster, and not how they join it. The centralized approaehtes slightly more accurate
clusters. However, this little difference is overwhelmaddmerous cost induced by a
centralized approach that needs global knowledge of baildamates and nodes in the
system.

Performing a QTclustering based on coordinates of long-sight neighbamssgils
a first approximation of nodes positioning. Even though sotkeasure network dis-
tances, as RTTs, towards identified cluster heads, this waegrevent some mutual
distances between cluster members to be above the expeatadtedr, due to TIVs.
Using coordinates reduces the proportion of diameter ti@ia, but since coordinates
“only” provide distance estimates, with intrinsic erroes;ors may always exist.

As shown in Table 1, the number of clusters identified by ogoathm ranges from
9 to 11 for both variants. However, we can in both cases consideri ahasters, with
an average population of 700 nodes each for the King datasdt, 260 nodes as an

average population of each cluster in the Meridian datadet. percentage of nodes
that have not been clustered are roughl§’ of nodes existing in the system. The
bottom part of Table 1 will be presented later.

Cooperative Variant Selfish Variant
King | Meridian | King [Meridian

Number of clusters 9 9 11 9
Number of outliers (unclustered nodes) 67 81 68 102
Total Number of pings 11116 17003 |20125 18075
Total Number of messages (excluding pings) | 1582 2300 843 246
Convergence time (seconds) 1875 1658 1658 | 2300
Ping rate before convergence (pings/s) 4.48 8.05 9.95| 6.45

Mean ping rate before convergence (pings/nog).0026 0.003 [0.0057 0.0026
Max ping rate before convergence (pings/nedg | 0.027| 0.038 |0.0398 0.023
Mean msg rate before convergence (msg/ncje|0.0003 0.0006 |0.0003 410~°
Max msg rate before convergence (msg/nogle | 0.403| 0.635 0.23 | 0.049
Mean ping rate after convergence (pings/nedg |{0.0002 0.0002 [0.0002 0.0002
Max ping rate after convergence (pings/nedg¢ | 0.03 0.032 |0.034| 0.022
Mean msg rate after convergence (msg/nogle | 107¢| 61077 (31077| 610~
Max msg rate after convergence (msg/nedg |0.0007 0.0003 |0.0002 0.0005
Table 1. Characteristics of the clustering process

4.2 Convergencetime

To separate the initial phase from steady state, we andigzevblution of the num-
ber of clustered nodes versus the number of awakenings @mzklversus the number
of clustering process calls) for both variants. As depidteBigures 2(a) and 2(b), the
curves labeled “Selfish Variant” follow linear evolutior&uch observation is expected
since at most one node can join a cluster at each awakenidghan the growth of
the number of clustered nodes can be at best linear. Clustthrs “Cooperative” vari-
ant may cumulate node membership with each node’s awakdr#eguse information
of potential membership to a newly created cluster is serthbycreator of a cluster
to identified members. In the curves labeled “Cooperatiy@gech”, we can then ob-
serve for both data sets the steps corresponding to a setle$ fmining simultaneously
a defined cluster. Such steps allow this variant to clusteertittan 95% of nodes in
1210 awakenings for the King dataset and in 1854 awakenardhé Meridian dataset,
whereas the “Selfish” takes more occurrences, up to 2749%awads. Such faster clus-
tering comes at the expense of costs of spreading informatid exchanged messages,
we will discuss in the following section.

Let us consider that our system is in the steady state if at 8% of existing
nodes have been clustered. Although such parameter raliearoa priori knowledge
of the number of outliers in the system, and hence on the mimimumber of nodes
that can be clustered, it gives us however a suitable waygarate the initial phase
from the steady state. It is important to notice that the eagwnce time, although dif-
ferent in terms of number of awakenings, is roughly the samreal time (in seconds)
spent to cluster 95% of the nodes, as shown in table 1. Thifsretnour choice of the

number of nodes clustered

1800

1600
1400
1200
1000

Cooperative variant
Selfish variant ===

0 500

1000 1500
number of awakening

(a) King dataset

2000 2500

number of nodes clustered

2500

2000

1500

1000

500

Cooperative variant
Selfish variant ---------~

500 1000 1500 2000 2500
number of awakening

(b) Meridian dataset

3000 3500

Fig. 2. Evolution of the number of clustered nodes

exponential-backoff strategy to set timers. Recall frotise 3.2, that our algorithm
will ensure that the greater the the lower the timer, giving hence more opportunity
to (re)initiate the clustering algorithm. This guarantaedsigher probability to initiate
the clustering algorithm in a “area” populated by nodes tiaate not been clustered
yet. This gives a way to adjust the awakening rate accordiniget number of clustered
nodes independently from the number of nodes existing irsyts¢eem. Such trend is
emphasized in the “Cooperative variant” where the convergeime is less than 2000
seconds for both data sets. Next we discuss the cost of thelsstiering algorithm.

4.3 Overhead
2500 18000
Cooperative variant Meridian oD T GEEICEIPEEDD (3 EDEIED € €01 6
S Cooperative varant King —— 16000 - Y]
Selfish variant King S
% 2000 Selfish variant Meridian - - - % 14000 e -
£ a » -
= ‘6 12000 - .
R ———— E o000 | o
5 £ «
2 2 8000 - s
2 1000 B A
s 8 6000 - f!
g g y
2
3 500 3 4000 - Selfish variant King e
Selfish variant Meridian - - -
e R R R N 2000 ¢ Cooperative variant Meridian]
o il o Cooperative variant King ——
0 0.2 0.4 0.6 0.8 1 0o 0.2 0.4 0.6 0.8 1

hours hours

(a) Cumulative number of exchanged messdbesCumulative number of performed measure-
ments

Fig. 3. Induced Overhead: exchanged messages and performed praasts

To observe the control messages and measurement overhealiffaventiate be-
tween the two states of the system: the initial phase (whestens are built) and the
steady state. We observe the induced overhead as the nufim&rasurements per-
formed, but also as the number of exchanged messages doeirduistering process.
Figure 3(a) depicts the cumulative number of exchanged agessversus time (up to

one hour). We do not consider thB)I N messages sent by clustered nodes to their
cluster heads, but focus on the difference that may existd®ai the two variants of the
algorithm.

The sharp rise of the curves in the initial phase is due to dleethat, at the be-
ginning of the algorithm, nodes have the same probabilityake-up, since all nearby
neighbors are not clustered yet. We manage to resolve sueht@b conflictual situa-
tion using the Freeze messages, sent to the long-sightbwighwhen a node identifies
a cluster head, and waits for its confirmation. We are mor&yilto encounter such
situations at the beginning of the algorithm. Moreover ay ¥ew nodes are clustered
in the initial phase, more clusters are created, leadingaierexchanged messages and
measurements.

We can observe from figure 3(a) that, as expected, the curmitaimber of mes-
sages by the “Selfish variant” is less important than the ‘feoative variant”. It is
however important to observe that the number of exchangedaes induced by newly
created clusters is very low after the initial phase. Oneestfstem reaches the steady
state, no more messages, are exchanged. The low messagagxcate observed dur-
ing the initial phase is confirmed by our results in table Thwiéry low message rates
of the scale ofl0~* per node per second as average values, and a maximum of 0.635
message/nodesecond.

In figure 3(b) we observe the cumulative number of measureserformed to-
wards the identified cluster heads (typically ping messadkés see again that the ma-
jor overhead is induced during the initial phase. We obsareee pings initially, when
nodes initiate their clustering process, with a maximungpate of 0.034 ping/node
second. Such very low overall ping rate per node is promiindarge scale deploy-
ment of our clustering scheme.

5 Conclusion

We have presented a distributed self-organized clustgriagess suitable for both
ICS accuracy enhancement, and scalable network-awarkapwsEployment. We have
shown that, although ICS systems suffer from inaccura@sslting from triangle in-
equality violations in the Internet, they can be exploiteddnstruct efficient clustering
schemes in a distributed way. Indeed, the proposed clogtprbcess is based on a first
approximation of node positioning using coordinates, glatith an adaptive back-off
strategy that allows load-balanced construction of chssté/e also present two vari-
ants of such clustering process that trade off the convesygme against the induced
overhead. However, the two variants have been shown to betigt, enjoying good
clustering performance, while achieving a very good traffdsetween scalability and
convergence time. Indeed, nodes are able to identify andfjeir clusters in a reason-
able amount of time, while rarely violating the diameter stoaints, and they still do
not trigger too frequent measurements.

Although this paper focused on Vivaldi for distance estgsatnd experimentations,
the algorithm proposed for clustering is independent ofdberdinate system used.
Our proposed scheme would then be general enough to be djipltee context of
coordinates computed by any Internet coordinate systems.

The reader should note though, that we do not yet considenditwations, when
nodes join and leave the system running the Internet CoataiSystem in an asyn-
chronous way. If we consider highly-dynamic networks, tlietentiation between the
initial phase and the steady state may fade away. Howewvet)uatering process would
adapt to situations when only few nodes are existing in tis¢esy, by simply not cre-
ating clusters if they are “useless”. Basically, by set@nminimum number of nodes
per cluster at the level of the Qdlustering, low populated clusters could be avoided.
It is also important to note that in churn situations, pingl amessage rates would be
moderate, and that considering a non-dynamic network insoaulations gives us a
worst-case of the cost of the system, at least in its initi@lge. Finally, even though
this paper does not address the problem of clusters maintenave note that differ-
ent solutions to such issues have been proposed elsewtgrfl @). Our future work
would then consist in integrating such maintenance tecf@sidn our distributed clus-
tering scheme.

References

1. T. S. E. Ng and H. Zhang, “Predicting Internet network distance wittrdinates-based
approaches,” ifProc. IEEE INFOCOM, New York, NY, USA, June 2002.

2. F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decalized network coordinate
system,” inProc. ACM SSGCOMM, Portland, OR, USA, Aug. 2004.

3. H. Zheng, E. K. Lua, M. Pias, and T. Griffin, “Internet Routing Piecand Round-Trip-
Times,” in Proc. the PAM Conference, Boston, MA, USA, Apr. 2005.

4. E.K.LuaandT. Griffin, “Embeddable overlay networks,HEE Symposium on Computers
and Communications, Aveiro, Portugal, 2007.

5. M. A. Kaafar, B. Gueye, F. Cantin, G. Leduc, and L. Mathy, “Tod&a two-tier internet
coordinate system to mitigate the impact of triangle inequality violations,Prot. |FIP
Networking Conference, Singapore, May 2008, LNCS 4982, pp. 397—408.

6. E. K. Lua, X. Zhou, J. Crowcroft, and P. V. Mieghem, “Scalabldtioasting with network-
aware geometric overlayComput. Commun., vol. 31, no. 3, pp. 464-488, 2008.

7. Y. He, Q. Zhao, J. Zhang, and G. Wu, “Topology-aware multi-clhustehitecture based on
efficient index techniques,” iNPC, 2005, LNCS 3779, pp. 163-171.

8. G. Xue, Y. Jiang, Y. You, and M. Li, “A topology-aware hierarchistructured overlay
network based on locality sensitive hashing schemelJRGRADE, New York, NY, USA,
2007, pp. 3-8, ACM.

9. L. J. Heyer, S. Kruglyak, and S. Yooseph, “Exploring expressiata: Identification and
analysis of coexpressed geneGgnome Research, vol. 9, no. 11, pp. 1106-1115, nov 1999.

10. Asimulator for peer-to-peer protocols, ht t p: / / www. pdos. | ¢cs. nmit. edu/ p2psi m
i ndex. htm .

11. B. Wong, A. Slivkins, and E. Sirer, “Meridian: A lightweight netwddcation service with-
out virtual coordinates,” ifProc. the ACM SSGCOMM, aug 2005.

12. R Development Core TearR: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2008, ISBN 32880607-0.

13. X. Liu, J. Lan, P. Shenoy, and K. Ramaritham, “Consistency maaniee in dynamic peer-
to-peer overlay networks Comput. Netw., vol. 50, no. 6, pp. 859-876, 2006.

