Skip to main content

The Balanced Edge Cover Problem

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

For an undirected graph Gā€‰=ā€‰(V, E), an edge cover is defined as a set of edges that covers all vertices of V. It is known that a minimum edge cover can be found in polynomial time and forms a collection of star graphs. In this paper, we consider the problem of finding a balanced edge cover where the degrees of star center vertices are balanced, which can be applied to optimize sensor network structures, for example. To this end, we formulate the problem as a minimization of the summation of strictly monotone increasing convex costs associated with degrees for covered vertices, and show that the optimality can be characterized as the non-existence of certain alternating paths. By using this characterization, we show that the optimal covers are also minimum edge covers, have the lexicographically smallest degree sequence of the covered vertices, and minimize the maximum degree of covered vertices. Based on the characterization we also present an O(|V||E|) time algorithm.

This work is supported in part by the Grant-in-Aid of the Ministry of Education, Science, Sports and Culture of Japan and by the Asahi glass foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouchet, A., Cunnigham, W.H.: Delta-matroids, jump systems, and bisubmodular polyhedra. SIAM Journal on Discrete MathematicsĀ 8, 17ā€“32 (1995)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of MathematicsĀ 17, 449ā€“467 (1965)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Gallai, T.: Ɯber Extreme Punkt- und Kantenmengen. Annales Universitatis Scientiarum Budapestinensis de Rolando Eƶtvƶs Nominatae, Sectio MathematicaĀ 2, 133ā€“138 (1959)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. Harvey, N.J.A., Ladner, R.E., Lovasz, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol.Ā 2748, pp. 294ā€“308. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  5. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Communication Protocol for Wireless Microsensor Networks. In: Proceedings of the Hawaii International Conference on System Sciences (HICSS), pp. 3005ā€“3014 (2000)

    Google ScholarĀ 

  6. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless CommunicationsĀ 1(4), 660ā€“670 (2002)

    ArticleĀ  Google ScholarĀ 

  7. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on ComputingĀ 2, 225ā€“231 (1973)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics QuarterlyĀ 2, 83ā€“97 (1955)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Lovasz, L.: The membership problem in jump systems. Journal of Combinatorial TheoryĀ  B 70, 45ā€“66 (1997)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Micali, S., Vazirani, V.V.: An O(V 1/2 E) algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science, pp. 12ā€“27 (1980)

    Google ScholarĀ 

  11. Norman, R.Z., Rabin, M.O.: An algorithm for a minimum cover of a graph. In: Proceedings of the American Mathematical Society, vol.Ā 10, pp. 315ā€“319 (1959)

    Google ScholarĀ 

  12. Tamir, A.: Least majorized elements and generalized polymatroids. Mathematics of Operations ResearchĀ 20, 583ā€“589 (1995)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the \(O(\sqrt{V} E)\) general graph maximum matching algorithm. CombinatoricaĀ 14, 71ā€“109 (1994)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harada, Y., Ono, H., Sadakane, K., Yamashita, M. (2008). The Balanced Edge Cover Problem. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics