Skip to main content

Computing with Priced Information: When the Value Makes the Price

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

  • 1612 Accesses

Abstract

We study the function evaluation problem in the priced information framework introduced in [Charikar et al. 2002]. We characterize the best possible extremal competitive ratio for the class of game tree functions. Moreover, we extend the above result to the case when the cost of reading a variable depends on the value of the variable. In this new value dependent cost variant of the problem, we also exactly evaluate the extremal competitive ratio for the whole class of monotone Boolean functions.

This work was supported by the Sofja Kovalevskaja Award 2004 of the Alexander von Humboldt Foundation and the Bundesministerium für Bildung und Forschung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boros, E., Ünlüyurt, T.: Diagnosing double regular systems. Annals of Mathematics and Artificial Intelligence 26(1-4), 171–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.M., Raghavan, P., Sahai, A.: Query strategies for priced information. Journal of Comp. and Syst. Sci. 64, 785–819 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cicalese, F., Laber, E.S.: A new strategy for querying priced information. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing, pp. 674–683 (2005)

    Google Scholar 

  4. Cicalese, F., Laber, E.S.: An optimal algorithm for querying priced information: Monotone Boolean functions and game trees. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 664–676. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cicalese, F., Laber, E.S.: On the competitive ratio of evaluating priced functions. In: Proc. of SODA 2006, pp. 944–953 (2006)

    Google Scholar 

  6. Cicalese, F., Laber, E.S.: Function evaluation via linear programming in the priced information model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 173–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Cicalese, F., Milanič, M.: Computing with priced information: game trees and the value dependent cost model. Technical Report 2008-03, Technical Faculty, Bielefeld University (2008); Also available from the authors’ web sites

    Google Scholar 

  8. Diderich, C.G.: A bibliography on minimax trees. SIGACT News 24(4), 82–89 (1993)

    Article  MATH  Google Scholar 

  9. Duffuaa, S.O., Raouf, A.: An optimal sequence in multicharacteristics inspection. J. Optim. Theory Appl. 67(1), 79–86 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gillies, D.W.: Algorithms to schedule tasks with and/or precedence constraints. PhD thesis, Champaign, IL, USA (1993)

    Google Scholar 

  11. Greiner, R., Hayward, R., Jankowska, M., Molloy, M.: Finding optimal satisficing strategies for and-or trees. Artificial Intelligence 170(1), 19–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heiman, R., Wigderson, A.: Randomized vs. deterministic decision tree complexity for read-once boolean functions. Computational Complexity 1, 311–329 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hellerstein, J.M.: Optimization techniques for queries with expensive methods. ACM Transactions on Database Systems 23(2), 113–157 (1998)

    Article  Google Scholar 

  14. Cox, J.L.A., Qiu, Y., Kuehner, W.: Heuristic least-cost computation of discrete classification functions with uncertain argument values. Ann. Oper. Res. 21(1-4), 1–30 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, Y., Cox Jr., L.A., Davis, L.: Guess-and-verify heuristics for reducing uncertainties in expert classification systems. In: Dubois, D., Wellman, M.P. (eds.) UAI, pp. 252–258. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  17. Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity of evaluating game trees. In: Proc. of FOCS 1986, pp. 29–38 (1986)

    Google Scholar 

  18. Shenoy, P.P.: Game trees for decision analysis. Theory and Decision 44, 149–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Snir, M.: Lower bounds on probabilistic linear decision trees. TCS 38(1), 69–82 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarsi, M.: Optimal search on some game trees. Journal of the ACM 30(3), 389–396 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Turney, P.: Types of cost in inductive concept learning. In: Proceedings of Workshop Cost-Sensitive Learning at the 17th International Conference on Machine Learning (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cicalese, F., Milanič, M. (2008). Computing with Priced Information: When the Value Makes the Price . In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics