Abstract
Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible. We demonstrate that a host of reconfiguration problems derived from NP-complete problems are PSPACE-complete, while some are also NP-hard to approximate. In contrast, several reconfiguration versions of problems in P are solvable in polynomial time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 738–749. Springer, Heidelberg (2007)
Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, Chichester (1997)
Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127–136 (1971)
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (1998)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)
Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006)
Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)
Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theoretical Computer Science 343, 72–96 (2005)
Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. International J. Foundations of Computer Science 16, 803–827 (2005)
Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning graphs with supply and demand. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 121–130. Springer, Heidelberg (2006)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. of Computer and System Sciences 4, 177–192 (1970)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of 10th ACM Symposium on Theory of Computing, pp. 216–226 (1978)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ito, T. et al. (2008). On the Complexity of Reconfiguration Problems. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-92182-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92181-3
Online ISBN: 978-3-540-92182-0
eBook Packages: Computer ScienceComputer Science (R0)