Skip to main content

On the Complexity of Reconfiguration Problems

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible. We demonstrate that a host of reconfiguration problems derived from NP-complete problems are PSPACE-complete, while some are also NP-hard to approximate. In contrast, several reconfiguration versions of problems in P are solvable in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 738–749. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, Chichester (1997)

    Book  MATH  Google Scholar 

  3. Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127–136 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  6. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  8. Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theoretical Computer Science 343, 72–96 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. International J. Foundations of Computer Science 16, 803–827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning graphs with supply and demand. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 121–130. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  13. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. of Computer and System Sciences 4, 177–192 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of 10th ACM Symposium on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ito, T. et al. (2008). On the Complexity of Reconfiguration Problems. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics