Abstract
Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair of disjoint rectangles such that their union contains S and the area of the larger rectangle is minimized. In this paper we consider two variants of this optimization problem: (1) the rectangles are free to rotate but must remain parallel to each other, and (2) one rectangle is axis-parallel but the other rectangle is allowed to have an arbitrary orientation. For both of the problems, we present O(n 2logn)-time algorithms using O(n) space.
This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-D00372) and by the Brain Korea 21 Project.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. ACM Comput. Surveys 30, 412–458 (1998)
Bae, S.W., Lee, C., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Maintaining extremal points and its applications to deciding optimal orientations. In: Proc. 18th Int. Sympos. Alg. Comput. (ISAAC), pp. 788–799 (2007)
Bespamyatnikh, S., Segal, M.: Covering a set of points by two axis-parallel boxes. Inform. Process. Lett. 75, 95–100 (2000)
Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd Annu. Found. Comput. Sci. (FOCS), pp. 617–626 (2002)
Frederickson, G., Johnson, D.: Generalized selection and ranking: sorted matrices. SIAM J. on Comput. 13, 14–30 (1984)
Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)
Jaromczyk, J.W., Kowaluk, M.: Orientation indenpendent covering of point sets in R 2 with pairs of rectangles or optimal squares. In: Proc. 12th Euro. Workshop Comput. Geom. (EuroCG), pp. 54–61 (1996)
Kats, M., Kedem, K., Segal, M.: Discrete rectilinear 2-center problem. Comput. Geom.: Theory and Applications 15, 203–214 (2000)
Katz, M., Sharir, M.: An expander-based approach to geometric optimization. SIAM J. on Comput. 26, 1384–1408 (1997)
Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30, 852–865 (1983)
Saha, C., Das, S.: Covering a set of points in a plane using two parallel rectangles. In: Proc. 17th Int. Conf. Comput.: Theory and Appl (ICCTA), pp. 214–218 (2007)
Segal, M.: Covering point sets and accompanying problems. PhD thesis, Ben-Gurion University, Israel (1999)
Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proc. IEEE MELECON 1983, Athens, Greece (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ahn, HK., Bae, S.W. (2008). Covering a Point Set by Two Disjoint Rectangles. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_64
Download citation
DOI: https://doi.org/10.1007/978-3-540-92182-0_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92181-3
Online ISBN: 978-3-540-92182-0
eBook Packages: Computer ScienceComputer Science (R0)