Skip to main content

Multiobjective Disk Cover Admits a PTAS

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

We introduce multiobjective disk cover problems and study their approximability. We construct a polynomial-time approximation scheme (PTAS) for the multiobjective problem where k types of points (customers) in the plane have to be covered by disks (base stations) such that the number of disks is minimized and for each type of points, the number of covered points is maximized. Our approximation scheme can be extended so that it works with the following additional features: interferences, different services for different types of customers, different shapes of supply areas, weighted customers, individual costs for base stations, and payoff for the quality of the obtained service.

Furthermore, we show that it is crucial to solve this problem in a multiobjective way, where all objectives are optimized at the same time. The constrained approach (i.e., the restriction of a multiobjective problem to a single objective) often used for such problems can significantly degrade their approximability. We can show non-approximability results for several single-objective restrictions of multiobjective disk cover problems. For example, if there are 2 types of customers, then maximizing the supplied customers of one type is not even approximable within a constant factor, unless P = NP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Arkin, E.M., Brönnimann, H., Erickson, J., Fekete, S.P., Knauer, C., Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: Symposium on Computational Geometry, pp. 449–458 (2006)

    Google Scholar 

  2. Angel, E., Bampis, E., Kononov, A.: A FPTAS for approximating the unrelated parallel machines scheduling problem with costs. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 194–205. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Angel, E., Bampis, E., Kononov, A.: On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems. Theoretical Computer Science 306(1-3), 319–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Moshe, B., Carmi, P., Katz, M.J.: Approximating the visible region of a point on a terrain. GeoInformatica 12(1), 21–36 (2008)

    Article  Google Scholar 

  5. Calinescu, G., Mandoiu, I.I., Wan, P.-J., Zelikovsky, A.: Selecting forwarding neighbors in wireless ad hoc networks. MONET 9(2), 101–111 (2004)

    Google Scholar 

  6. Cannon, A.H., Cowen, L.J.: Approximation algorithms for the class cover problem. Annals of Mathematics and Artificial Intelligence 40(3-4), 215–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. Journal of Algorithms 46(2), 178–189 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, T.C.E., Janiak, A., Kovalyov, M.Y.: Bicriterion single machine scheduling with resource dependent processing times. SIAM Journal on Optimization 8(2), 617–630 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathematics 86(1-3), 165–177 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diakonikolas, I., Yannakakis, M.: Small approximate pareto sets for bi-objective shortest paths and other problems. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 74–88. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Dongarra, J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms for optimizing makespan and reliability on heterogeneous systems. In: Proceedings 19th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 280–288. ACM, New York (2007)

    Google Scholar 

  13. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  14. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing 34(6), 1302–1323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erlebach, T., van Leeuwen, E.J.: Approximating geometric coverage problems. In: Proceedings of 19th Annual Aymposium on Discrete Algorithms, pp. 1267–1276 (2008)

    Google Scholar 

  16. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glaßer, C., Reith, S., Vollmer, H.: The complexity of base station positioning in cellular networks. Discrete Applied Mathematics 148(1), 1–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hochbaum, D., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM 32, 130–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Narayanappa, S., Vojtechovsky, P.: An improved approximation factor for the unit disk covering problem. In: CCCG (2006)

    Google Scholar 

  20. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS, pp. 86–92 (2000)

    Google Scholar 

  21. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria combinatorial optimization. Working papers 3756-95, Massachusetts Institute of Technology, Sloan School of Management (1995)

    Google Scholar 

  22. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria flow, knapsack, and scheduling problems. Working papers 3757-95, Massachusetts Institute of Technology, Sloan School of Management (1995)

    Google Scholar 

  23. Vassilvitskii, S., Yannakakis, M.: Efficiently computing succinct trade-off curves. Theoretical Computer Science 348(2-3), 334–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glaßer, C., Reitwießner, C., Schmitz, H. (2008). Multiobjective Disk Cover Admits a PTAS. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics