Abstract
This work studies the quantum query complexity of Boolean functions in an unbounded-error scenario where it is only required that the query algorithm succeeds with a probability strictly greater than 1/2. We first show that, just as in the communication complexity model, the unbounded-error quantum query complexity is exactly half of its classical counterpart for any (partial or total) Boolean function. Next, connecting the query and communication complexity results, we show that the “black-box” approach to convert quantum query algorithms into communication protocols by Buhrman-Cleve-Wigderson [STOC’98] is optimal even in the unbounded-error setting. We also study a related setting, called the weakly unbounded-error setting. In contrast to the case of communication complexity, we show a tight multiplicative Θ(logn) separation between quantum and classical query complexity in this setting for a partial Boolean function.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Computing 1, 47–79 (2005)
Ambainis, A.: A note on quantum black-box complexity of almost all Boolean functions. Inform. Process. Lett. 71, 5–7 (1999)
Alon, N., Spencer, J.: The probabilistic method. Discrete Mathematics and Optimization. Wiley Interscience, Hoboken (2000)
Aspnes, J., Beigel, R., Furst, M., Rudich, S.: The expressive power of voting polynomials. Combinatorica 14, 1–14 (1994)
Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity. In: Proc. 27th FOCS, pp. 303–312 (1986)
Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48, 778–797 (2001)
Beigel, R.: Perceptrons, PP, and the polynomial hierarchy. Comput. Complexity 4, 339–349 (1994)
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997)
Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proc. 30th STOC, pp. 63–68 (1998)
Buhrman, H., Vereshchagin, N., de Wolf, R.: On computation and communication with small bias. In: Proc. 22nd CCC, pp. 24–32 (2007)
van Dam, W.: Quantum oracle interrogation: getting all information for almost half the price. In: Proc. 39th FOCS, pp. 362–367 (1998)
O’Donnell, R., Servedio, R.A.: Extremal properties of polynomial threshold functions. In: Proc. 18th CCC, pp. 3–12 (2003)
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81, 5442–5444 (1998)
Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity. J. Comput. Syst. Sci. 65, 612–625 (2002)
Le Gall, F.: Quantum weakly nondeterministic communication complexity. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 658–669. Springer, Heidelberg (2006)
Halstenberg, B., Reischuk, R.: Relations between communication complexity classes. J. Comput. Syst. Sci. 41, 402–429 (1990)
Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Unbounded-error one-way classical and quantum communication complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 110–121. Springer, Heidelberg (2007)
Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Unbounded-error classical and quantum communication complexity. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 100–111. Springer, Heidelberg (2007)
Klauck, H.: Lower bounds for quantum communication complexity. SIAM J. Comput. 37, 20–46 (2007)
Massar, S., Bacon, D., Cerf, N., Cleve, R.: Classical simulation of quantum entanglement without local hidden variables. Phys. Rev. A 63, 052305 (2001)
Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, Cambridge (1988)
Paturi, R., Simon, J.: Probabilistic communication complexity. J. Comput. Syst. Sci. 33, 106–123 (1986)
Razborov, A.A.: Quantum communication complexity of symmetric predicates. Izvestiya Math. (English version) 67, 145–149 (2003)
Sherstov, A.: Halfspace matrices. In: Proc. 22nd CCC, pp. 83–95 (2007)
de Wolf, R.: Quantum Computing and Communication Complexity, University of Amsterdam (2001)
de Wolf, R.: Nondeterministic quantum query and communication complexities. SIAM J. Comput. 32, 681–699 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Montanaro, A., Nishimura, H., Raymond, R. (2008). Unbounded-Error Quantum Query Complexity. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_80
Download citation
DOI: https://doi.org/10.1007/978-3-540-92182-0_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92181-3
Online ISBN: 978-3-540-92182-0
eBook Packages: Computer ScienceComputer Science (R0)