Skip to main content

On the Road to \(\mathcal{PLS}\)-Completeness: 8 Agents in a Singleton Congestion Game

  • Conference paper
Internet and Network Economics (WINE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5385))

Included in the following conference series:

Abstract

In this paper, we investigate the complexity of computing locally optimal solutions for Singleton Congestion Games (SCG) in the framework of \(\mathcal{PLS}\), as defined in Johnson et al. [25]. Here, in an instance weighted agents choose links from a set of identical links. The cost of an agent is the load (the sum of the weights of the agents) on the link it chooses. The agents are selfish and try to minimize their individual cost. Agents may form arbitrary, non-fixed coalitions. The cost of a coalition is defined to be the maximum cost of its members. The potential function is defined as the lexicographical order of the agents’ cost. In each selfish step of a coalition, the potential function decreases. Thus, a local minimum is a Nash Equilibrium among coalitions of size at most k—an assignment where no coalition of size at most k has an incentive to unilaterally decrease its cost by switching to different links. The neighborhood of a feasible assignment (every agent chooses a link) are all assignments, where the cost of some arbitrary non-fixed coalition of at most k reallocating agents decreases. We call this problem SCG-(k) and show that SCG-(k) is \(\mathcal{PLS}\)-complete for k ≥ 8. On the other hand, for k = 1, it is well known that the solution computed by Graham’s LPT-algorithm [14,16,22] is locally optimal for SCG-(k).

We show our result by tight reduction from the MaxConstraintAssignment-problem (p,q,r)-MCA, which is an extension of Generalized Satisfiability to higher valued variables. Here, p is the maximum number of variables occurring in a constraint, q is the maximum number of appearances of a variable, and r is the valuedness of the variables.

To the best of our knowledge, SCG-(k) is the first problem, which is known to be solvable in polynomial time for a small neighborhood and \(\mathcal{PLS}\)-complete for a larger, but still constant neighborhood.

This work has been partially supported by the European Union within the Integrated Project IST-15964 “AEOLUS” and the German Science Foundation (DFG) Research Training Group GK-693 of the Paderborn Institute for Scientific Computation (PaSCo).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E., Korst, J., Michiels, W.: Theoretical Aspects of Local Search. Monographs in Theoretical Computer Science. An EATCS Series. Springer, New York (2007)

    MATH  Google Scholar 

  2. Aarts, E., Lenstra, J. (eds.): Local Search in Combinatorial Optimization. John Wiley & Sons, Inc., New York (1997)

    MATH  Google Scholar 

  3. Ackermann, H., Röglin, H., Vöcking, B.: On the Impact of Combinatorial Structure on Congestion Games. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 613–622. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  4. Ahuja, R., Ergun, Ö., Orlin, J., Punnen, A.: A Survey of Very Large-Scale Neighborhood Search Techniques. Discrete Appl. Math. 123(1-3), 75–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brucker, P., Hurink, J., Werner, F.: Improving Local Search Heuristics for Some Scheduling Problems. Part II. Discrete Appl. Math. 72(1-2), 47–69 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brüggemann, T., Hurink, J., Vredeveld, T., Woeginger, G.: Very Large-Scale Neighborhoods With Performance Guarantees for Minimizing Makespan on Parallel Machines. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 41–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight Bounds for Selfish and Greedy Load Balancing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Chien, S., Sinclair, A.: Convergence to Approximate Nash Equilibria in Congestion Games. In: Proceedings of the 18th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2007) (2007)

    Google Scholar 

  9. Czumaj, A., Vöcking, B.: Tight Bounds for Worst-Case Equilibria. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 413–420 (2002); Also accepted to Journal of Algorithms as Special Issue of SODA 2002

    Google Scholar 

  10. Dumrauf, D., Monien, B.: On the PLS-Complexity of Maximum Constraint Assignment (submitted, 2008)

    Google Scholar 

  11. Dumrauf, D., Monien, B.: On the Road to PLS-Completeness: 8 Agents in a Singleton Congestion Game. Technical report, University of Paderborn (2008)

    Google Scholar 

  12. Dumrauf, D., Monien, B., Tiemann, K.: Multiprocessor Scheduling is PLS-Complete. In: Proceedings of the 42nd Annual Hawaii International Conference on System Sciences (HICSS 42) (2008)

    Google Scholar 

  13. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of computing (STOC 2004), pp. 604–612. ACM Press, New York (2004)

    Google Scholar 

  14. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the Coordination Ratio for a Selfish Routing Game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S.: Strong Price of Anarchy for Machine Load Balancing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 583–594. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic Congestion Games Among Coalitions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 572–583. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash Equilibria for Scheduling on Restricted Parallel Links. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC 2004), pp. 613–622 (2004)

    Google Scholar 

  19. Gairing, M., Monien, B., Tiemann, K.: Selfish Routing With Incomplete Information. Theory of Computing Systems 42(1), 91–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garey, M., Johnson, D.: Computers and Intractability; A Guide to the Theory of NP-Completeness. Mathematical Sciences Series. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  21. Gonzalez, T.: Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC Computer & Information Science Series. Chapman & Hall/CRC, Boca Raton (2007)

    Book  MATH  Google Scholar 

  22. Graham, R.L.: Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied Mathematics 17(2), 416–429 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hayrapetyan, A., Tardos, É., Wexler, T.: The Effect of Collusion in Congestion Games. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing (STOC 2006), pp. 89–98. ACM, New York (2006)

    Google Scholar 

  24. Hurkens, C., Vredeveld, T.: Local Search for Multiprocessor Scheduling: How Many Moves Does It Take to a Local Optimum? Oper. Res. Lett. 31(2), 137–141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, D., Papadimtriou, C., Yannakakis, M.: How Easy is Local Search? Journal of Computer and System Science 37(1), 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  27. Krentel, M.: Structure in Locally Optimal Solutions (Extended Abstract). In: 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pp. 216–221 (1989)

    Google Scholar 

  28. Mas-Colell, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford University Press, Inc., Oxford (1995)

    MATH  Google Scholar 

  29. Orlin, J., Punnen, A., Schulz, A.: Approximate Local Search in Combinatorial Optimization. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 587–596. Society for Industrial and Applied Mathematics, Philadelphia (2004)

    Google Scholar 

  30. Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1993)

    MATH  Google Scholar 

  31. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schäffer, A., Yannakakis, M.: Simple Local Search Problems That Are Hard to Solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schuurman, P., Vredeveld, T.: Performance Guarantees of Local Search for Multiprocessor Scheduling. In: Proceedings of the 8th International IPCO Conference on Integer Programming and Combinatorial Optimization, London, UK, pp. 370–382. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  34. Skopalik, A., Vöcking, B.: Inapproximability of Pure Nash Equilibria. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 355–364. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumrauf, D., Monien, B. (2008). On the Road to \(\mathcal{PLS}\)-Completeness: 8 Agents in a Singleton Congestion Game . In: Papadimitriou, C., Zhang, S. (eds) Internet and Network Economics. WINE 2008. Lecture Notes in Computer Science, vol 5385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92185-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92185-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92184-4

  • Online ISBN: 978-3-540-92185-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics