Skip to main content

Self-organizing Desynchronization and TDMA on Wireless Sensor Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5151))

Abstract

Desynchronization is a recently introduced primitive for sensor networks: it implies that nodes perfectly interleave periodic events to occur in a round-robin schedule. This primitive can be used to evenly distribute sampling burden in a group of nodes, schedule sleep cycles, or organize a collision-free TDMA schedule for transmitting wireless messages. Here we present a summary of Desync, a biologically-inspired self-maintaining algorithm for desynchronization in a single-hop network. We also describe Desync-TDMA, a self-adjusting TDMA protocol that addresses two weaknesses of traditional TDMA: it does not require a global clock and it automatically adjusts to the number of participating nodes, so that bandwidth is always fully utilized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Degesys, J., Rose, I., Patel, A., Nagpal, R.: DESYNC: Self-Organizing Desynchronization and TDMA on Wireless Sensor Networks. In: IPSN (2007)

    Google Scholar 

  2. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System architecture directions for networked sensors. In: ASPLOS (November 2000)

    Google Scholar 

  3. Hong, Y., Scaglione, A.: A scalable synchronization protocol for large scale sensor networks and its applications. IEEE Journal on Selected Areas in Communication (November 2003)

    Google Scholar 

  4. Langendoen, K., Halkes, G.: Energy-Efficient Medium Access Control. In: Embedded System Handbook. CRC Press, Boca Raton (2005)

    Google Scholar 

  5. Lorincz, K., Malan, D., Fulford-Jones, T., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Moulton, S., Welsh, M.: Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing (December 2004)

    Google Scholar 

  6. Lucarelli, D., Wang, I.: Decentralized synchronization protocols with nearest neighbor communication. In: SenSys (2004)

    Google Scholar 

  7. Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: The Flooding Time Synchronization Protocol. In: SenSys (2004)

    Google Scholar 

  8. Mirollo, R., Strogatz, S.: Synchronization of pulse-coupled biological oscillators. SIAM Journal of Applied Math. 50(6), 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: SenSys (2004)

    Google Scholar 

  10. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-efficient collision-free medium access control for wireless sensor networks. In: SenSys (2003)

    Google Scholar 

  11. Rhee, I., Warrier, A., Aia, M., Min, J.: Z-MAC: A Hybrid MAC for Wireless Sensor Networks. In: SenSys (2005)

    Google Scholar 

  12. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, V., Nádas, A., Pap, G., Sallai, J., Frampton, K.: Sensor network-based countersniper system. In: SenSys (2004)

    Google Scholar 

  13. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  14. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, V., Nádas, A., Pap, G., Sallai, J., Frampton, K.: Sensor Network-Based Countersniper System. In: SenSys 2004: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (2004)

    Google Scholar 

  15. Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring volcanic eruptions with a wireless sensor network. In: Proc. European Workshop on Wireless Sensor Networks (EWSN) (January 2005)

    Google Scholar 

  16. Werner-Allen, G., Tewari, G., Patel, A., Nagpal, R., Welsh, M.: Firefly-Inspired Sensor Network Synchronicity with Realistic Radio Effects. In: SenSys (2005)

    Google Scholar 

  17. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless Sensor Networks. In: INFOCOM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degesys, J., Rose, I., Patel, A., Nagpal, R. (2008). Self-organizing Desynchronization and TDMA on Wireless Sensor Networks. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92191-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92190-5

  • Online ISBN: 978-3-540-92191-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics