Abstract
Kleinberg [17] proposed in 2000 the first random graph model achieving to reproduce small world navigability, i.e. the ability to greedily discover polylogarithmic routes between any pair of nodes in a graph, with only a partial knowledge of distances. Following this seminal work, a major challenge was to extend this model to larger classes of graphs than regular meshes, introducing the concept of augmented graphs navigability. In this paper, we propose an original method of augmentation, based on metrics embeddings. Precisely, we prove that, for any ε> 0, any graph G such that its shortest paths metric admits an embedding of distorsion γ into ℝd can be augmented by one link per node such that greedy routing computes paths of expected length \(O(\frac1\varepsilon\gamma^d\log^{2+\varepsilon}n)\) between any pair of nodes with the only knowledge of G. Our method isolates all the structural constraints in the existence of a good quality embedding and therefore enables to enlarge the characterization of augmentable graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Assouad, P.: Plongements lipschitzien dans ℝn. Bull. Soc. Math. France 111(4), 429–448 (1983)
Abraham, I., Bartal, Y., Neiman, O.: Advances in metric embedding theory. In: Proceeeding of the the 38th annual ACM symposium on Theory of Computing (STOC), pp. 271–286 (2006)
Abraham, I., Bartal, Y., Neiman, O.: Embedding Metric Spaces in their Intrinsic Dimension. In: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), pp. 363–372 (2008)
Abraham, I., Gavoille, C.: Object location using path separators. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 188–197 (2006)
Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics 52, 46–52 (1985)
Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network coordinate system. In: ACM SIGCOMM (2004)
Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned into a small-world? Theoretical Computer Science 355(1), 96–103 (2006)
Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Towards small world emergence. In: 18th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 225–232 (2006)
Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global social networks. Science 301, 827–829 (2003)
Fraigniaud, P.: Greedy routing in tree-decomposed graphs: a new perspective on the small-world phenomenon. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 791–802. Springer, Heidelberg (2005)
Fraigniaud, P., Gavoille, C.: Polylogarithmic network navigability using compact metrics with small stretch. In: 20th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 62–69 (2008)
Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal Augmentation Schemes for Network Navigability: Overcoming the \(\sqrt{n}\)-Barrier. In: Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA), pp. 1–7 (2007)
Fraigniaud, P., Lebhar, E., Lotker, Z.: A Doubling Dimension Threshold Θ(loglogn) for Augmented Graph Navigability. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 376–386. Springer, Heidelberg (2006)
Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 534–543 (2003)
Indyk, P.: Algorithmic aspects of geometric embeddings. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, FOCS (2001)
Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz maps into a Hilbert space. Contemporary mathematics 26, 189–206 (1984)
Kleinberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In: 32nd ACM Symp. on Theo. of Comp. (STOC), pp. 163–170 (2000)
Kleinberg, J.: Small-World Phenomena and the Dynamics of Information. Advances in Neural Information Processing Systems (NIPS) 14 (2001)
Kleinberg, J.: Complex networks and decentralized search algorithm. In: Intl. Congress of Math, ICM (2006)
Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, Heidelberg (2002)
Milgram, S.: The Small-World Problem. Psychology Today, 60–67 (1967)
Slivkins, A.: Distance estimation and object location via rings of neighbors. In: 24th Annual ACM Symp. on Princ. of Distr. Comp. (PODC), pp. 41–50 (2005)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lebhar, E., Schabanel, N. (2008). Graph Augmentation via Metric Embedding. In: Baker, T.P., Bui, A., Tixeuil, S. (eds) Principles of Distributed Systems. OPODIS 2008. Lecture Notes in Computer Science, vol 5401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92221-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-92221-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92220-9
Online ISBN: 978-3-540-92221-6
eBook Packages: Computer ScienceComputer Science (R0)