Skip to main content

Fusion Based Blind Image Steganalysis by Boosting Feature Selection

  • Conference paper
Digital Watermarking (IWDW 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5041))

Included in the following conference series:

Abstract

In this paper, a feature-level fusion based approach is proposed for blind image steganalysis. We choose three types of typical higher-order statistics as the candidate features for fusion and make use of the Boosting Feature Selection (BFS) algorithm as the fusion tool to select a subset of these candidate features as the new fusion feature vector for blind image steganalysis. Support vector machines are then used as the classifier. Experimental results show that the fusion based approach increases the blind detection accuracy and also provides a good generality by identifying an untrained stego-algorithm. Moreover, we evaluate the performance of our candidate features for fusion by making some analysis of the components of the fusion feature vector in our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Johnson, N.F., Jajodia, S.: Exploring steganography: Seeing the unseen. In: Computer, vol. 31, pp. 26–34. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  2. Provos, N.: Defending against statistical steganalysis. In: Proceedings of the 10th USENIX Security Symposium, pp. 323–336 (2001)

    Google Scholar 

  3. Fridrich, J., Goljan, M.: Practical steganalysis of digital images — state of the art. In: Security and Watermarking of Multimedia Contents, vol. SPIE-4675, pp. 1–13 (2002)

    Google Scholar 

  4. Tzschoppe, R., Aauml, R.B.: Steganographic system based on higher-order statistics. In: Proceedings of SPIE,Security and Watermarking of Multimedia Contents V,USA, vol. 5020 (2003)

    Google Scholar 

  5. Farid, H.: Detecting hidden messages using higher-order statistics and support vector machines. In: 5th International Workshop on Information Hiding (2002)

    Google Scholar 

  6. Harmsen, J.J., Pearlman, W.A.: Steganalysis of additive noise modelable information hiding. In: Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents VI, pp. 131–142 (2003)

    Google Scholar 

  7. Goljan, M., Fridrich, J., Holotyak, T.: New blind steganalysis and its implications. In: Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents VI, pp. 1–13 (2006)

    Google Scholar 

  8. Friedma, F., Hastie, T.: Additive logistic regression: a statistical view of boosting (1998)

    Google Scholar 

  9. Tieu, K., Viola, P.: Boosting image retrieval. In: IEEE Conf.on Computer Vision and Pattern Recognition, pp. 228–235 (2002)

    Google Scholar 

  10. Jain, A.K.: Score normalization in multimodal biometric systems. Pattern Recognition 38, 2270–2285 (2005)

    Article  Google Scholar 

  11. Kharrazi, M.: Improving steganalysis by fusion techniques: A case study with image steganography. In: Tran. On Data Hiding and Multimedia Security, pp. 123–137 (2006)

    Google Scholar 

  12. Xuan, G., Shi, Y.Q.: Steganalysis based on multiple features formed by statistical moments of wavelet characteristics functions. In: Proc. Information Hiding Workshop, pp. 262–277 (2005)

    Google Scholar 

  13. Shi, Y.Q., et al.: Image steganalysis based on moments of characteristic functions using wavelet decomposition, prediction-error image,andneural network. In: ICME 2005, pp. 269–272 (2005)

    Google Scholar 

  14. Sullivan, K., et al.: Steganalysis for markov cover data with applications to images. IEEE Trans.Inf. Forensics Security 1, 275–287 (2006)

    Article  Google Scholar 

  15. Chen, X.C., Wang, Y.H., Guo, L., Tan, T.N.: Blind image steganalysis based on statistical analysis of empirical matrix. In: ICPR (3) 2006, pp. 1107–1110 (2006)

    Google Scholar 

  16. Joachims, T.: Making large-scale svm learning practical,in adavances in kernel methods-support vector learning. In: Scholkopf, B., Burges, C. (eds.). MIT Press, Cambridge (1999)

    Google Scholar 

  17. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectru, watermarking for multimedia. IEEE Trans.Image Process 6(12), 1673–1687 (1997)

    Article  Google Scholar 

  18. Huang, J., Shi, Y.Q.: Adaptive image watermarking scheme based on visual masking. Electron, Letter 34, 748–750 (1998)

    Article  MathSciNet  Google Scholar 

  19. Lie, W.N., Chang, L.C.: Data hiding in images with adaptive numbers of least significant bits based on human visual system. In: Proc. IEEE Int. Conf. Image Processing, pp. 286–290 (1999)

    Google Scholar 

  20. Chen, B., Wornell, G.W.: Digital watermarking and information embedding using dither modulation. In: Proceedings of IEEE MMSP, pp. 273–278 (1998)

    Google Scholar 

  21. Piva, A., Barni, M., Bartolini, E., Cappellini, V.: Dct-based watermark recovering without resorting to the uncorrupted original image. In: Proc. ICIP 1997, vol. 1, p. 520 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, J., Chen, X., Guo, L., Tan, T. (2008). Fusion Based Blind Image Steganalysis by Boosting Feature Selection. In: Shi, Y.Q., Kim, HJ., Katzenbeisser, S. (eds) Digital Watermarking. IWDW 2007. Lecture Notes in Computer Science, vol 5041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92238-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92238-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92237-7

  • Online ISBN: 978-3-540-92238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics