Abstract
For decades, the size of silicon CMOS transistors has decreased steadily while their performance has improved. As the devices approach their physical limits, the need for alternative materials, structures and computational schemes becomes evident. This paper considers a computational scheme based on an abstract model of the gene regulatory network called Random Boolean Network (RBN). On one hand, our interest in RBNs is due to their attractive fault-tolerant features. The parameters of an RBN can be tuned so that it exhibits a robust behavior in which minimal changes in network’s connections, values of state variables, or associated functions, typically cause no variation in the network’s dynamics. On the other hand, a computational scheme based on RBNs seems appealing for emerging technologies in which it is difficult to control the growth direction or precise alignment, e.g. carbon nanotubes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alberts, B., Bray, D., Lewis, J., Ra, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, New York (1994)
Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3, 318–356 (1961)
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed nets. Journal of Theoretical Biology 22, 437–467 (1969)
Huang, S., Ingber, D.E.: Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research 261, 91–103 (2000)
Kauffman, S.A., Weinberger, E.D.: The nk model of rugged fitness landscapes and its application to maturation of the immune response. Journal of Theoretical Biology 141, 211–245 (1989)
Bornholdt, S., Rohlf, T.: Topological evolution of dynamical networks: Global criticality from local dynamics. Physical Review Letters 84, 6114–6117 (2000)
Atlan, H., Fogelman-Soulie, F., Salomon, J., Weisbuch, G.: Random Boolean networks. Cybernetics and System 12, 103–121 (2001)
Aldana, M., Coopersmith, S., Kadanoff, L.P.: Boolean dynamics with random couplings, http://arXiv.org/abs/adap-org/9305001
Derrida, B., Pomeau, Y.: Random networks of automata: a simple annealed approximation. Biophys. Lett. 1, 45 (1986)
Derrida, B., Flyvbjerg, H.: Multivalley structure in Kauffman’s model: Analogy with spin glass. J. Phys. A: Math. Gen. 19, L1103 (1986)
Derrida, B., Flyvbjerg, H.: Distribution of local magnetizations in random networks of automata. J. Phys. A: Math. Gen. 20, L1107 (1987)
Snow, E.S., Novak, J.P., Campbell, P.M., Park, D.: Random networks of carbon nanotubes as an electronic material. Applied Physics Letters 81(13), 2145–2147 (2003)
Luque, B., Sole, R.V.: Stable core and chaos control in Random boolean networks. Journal of Physics A: Mathematical and General 31, 1533–1537 (1998)
Flyvbjerg, H., Kjaer, N.J.: Exact solution of Kauffman model with connectivity one. J. Phys. A: Math. Gen. 21, 1695 (1988)
Bastola, U., Parisi, G.: The critical line of Kauffman networks. J. Theor. Biol. 187, 117 (1997)
Kauffman, S.A.: The Origins of Order: Self-Organization and Selection of Evolution. Oxford University Press, Oxford (1993)
Socolar, J.E.S., Kauffman, S.A.: Scaling in ordered and critical random Boolean networks, http://arXiv.org/abs/cond-mat/0212306
Bastola, U., Parisi, G.: The modular structure of Kauffman networks. Phys. D 115, 219 (1998)
Wuensche, A.: The DDlab manual (2000), http://www.cogs.susx.ac.uk/users/andywu/man_contents.html
Bilke, S., Sjunnesson, F.: Stability of the Kauffman model. Physical Review E 65, 016129 (2001)
Dubrova, E., Teslenko, M., Martinelli, A.: Kauffman networks: Analysis and applications. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 479–484 (November 2005)
Bryant, R.: Graph-based algorithms for Boolean function manipulation. Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 677–691 (1986)
Flyvbjerg, H.: An order parameter for networks of automata. J. Phys. A: Math. Gen. 21, L955 (1988)
Bastola, U., Parisi, G.: Relevant elements, magnetization and dynamic properties in Kauffman networks: a numerical study. Physica D 115, 203 (1998)
Dubrova, E., Teslenko, M.: Compositional properties of Random Boolean Networks. Physical Review E 71, 056116 (2005)
Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic Publishers, Norwell (2000)
Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic Model Checking: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, Washington, D.C, pp. 1–33. IEEE Computer Society Press, Los Alamitos (1990)
Burch, J., Clarke, E., Long, D.E., McMillan, K., Dill, D.: Symbolic Model Checking for sequential circuit verification. Transactions on Computer-Aided Design of Integrated Circuits and Systems 13(4), 401–442 (1994)
Bjesse, P.: DAG-aware circuit compression for formal verification. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 42–49 (November 2004)
Reddy, S.M., Kunz, W., Pradhan, D.K.: Novel verification framework combining structural and OBDD methods in a synthesis environment. In: Proceedings of the 32th ACM/IEEE Design Automation Conference, San Francisco, pp. 414–419 (June 1995)
Williams, P.F., Biere, A., Clarke, E.M., Gupta, A.: Combining decision diagrams and SAT procedures for efficient symbolic model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 125–138. Springer, Heidelberg (2000)
van Eijk, C.A.J., Jess, J.A.G.: Detection of equivalent state variables in finite state machine verification. In: 1995 ACM/IEEE International Workshop on Logic Synthesis, Tahoe City, CA, pp. 3-35–3-44 (May 1995)
Geist, D., Beer, I.: Efficient model checking by automated ordering of transition relation partitions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 299–310. Springer, Heidelberg (1994)
Liu, A.Y., True, L.D.: Characterization of prostate cell types by cd cell surface molecules. The American Journal of Pathology 160, 37–43 (2002)
Birnbaum, K.D., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., Benfey, P.N.: A global view of cellular identity in the Arabidopsis root. In: Proceedings of the International Conference on Arabidopsis Research, Berlin, Germany (July 2004)
De Sales, J.A., Martins, M.L., Stariolo, D.A.: Cellular automata model for gene networks. Physical Review E 55, 3262–3270 (1997)
Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dubrova, E., Teslenko, M., Tenhunen, H. (2008). A Computational Scheme Based on Random Boolean Networks. In: Priami, C., Dressler, F., Akan, O.B., Ngom, A. (eds) Transactions on Computational Systems Biology X. Lecture Notes in Computer Science(), vol 5410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92273-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-92273-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92272-8
Online ISBN: 978-3-540-92273-5
eBook Packages: Computer ScienceComputer Science (R0)