Skip to main content

Flooding-Assisted Threshold Assignment for Aggregate Monitoring in Sensor Networks

  • Conference paper
Distributed Computing and Networking (ICDCN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5408))

Included in the following conference series:

Abstract

The research community has witnessed a large interest in monitoring large scale distributed systems. In these applications typically we wish to monitor a global system condition which is defined as a function of local network elements parameters. In this paper, we address Aggregate Threshold Queries in sensor networks, which are used to detect when an aggregate value of all sensor measurements crosses a predetermined threshold. The major constraint in designing monitoring applications is reducing the amount of communication burden which is the dominant factor of energy drain in wireless sensor networks. In this study, we address the aggregate threshold monitoring problem by proposing a distributed algorithm to set local thresholds on each sensor node so as to minimize the probability of global polling. We adopt the FPTAS optimization formulation of the problem [2] and propose a distributed algorithm as the solution to the problem. Simulation results demonstrate the validity of the proposed distributed algorithm in attaining very close performance as the centralized schema.

This work is partially supported by Iran Telecommunication research Center (ITRC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor Networks. IEEE Communications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  2. Aggrawal, S., Deb, S., Naidu, K.V.M., Rastogi, R.: Efficient Detection of Distributed Constraint Violations. In: Proc. of IEEE ICDE, pp. 1320–1324 (2007)

    Google Scholar 

  3. Babcock, B., Olston, C.: Distributed Top-k Monitoring. In: Proc. of ACM SIGMOD, pp. 28–39 (2003)

    Google Scholar 

  4. Bertsekas, D.: Nonlinear Programming. Athena Scientific (1999)

    Google Scholar 

  5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip Algorithms: Design, Analysis, and Applications. In: Proc. IEEE INFOCOM, pp. 1653–1664 (2005)

    Google Scholar 

  6. Cormode, G., Garofalakis, M.: Sketching streams through the net: Distributed approximate query tracking. In: Proc. VLDB, pp. 13–24 (2005)

    Google Scholar 

  7. Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi., R.: Holistic aggregates in a networked world: Distributed tracking of approximate quantiles. In: Proc. ACM SIGMOD, pp. 25–36 (2005)

    Google Scholar 

  8. Cormode, G., Muthurikshnan, S., Yi, K.: Algorithms for Distributed Functional Monitoring. In: Proc. ACM SODA, pp. 1076–1085 (2008)

    Google Scholar 

  9. Das, A., Ganguly, S., Garofalakis, M., Rastogi, R.: Distributed set-expression cardinality estimation. In: Proc. VLDB, pp. 312–323 (2004)

    Google Scholar 

  10. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-Driven Data Acquisition in Sensor Networks. In: Proc. VLDB, pp. 588–599 (2004)

    Google Scholar 

  11. Deshpande, A., Guestrin, C., Madden, S.: Using Probabilistic Models for Data Management in Acquisitional Environments. In: Proc. CIDR, pp. 317–328 (2005)

    Google Scholar 

  12. Dilman, M., Raz, D.: Efficient Reactive Monitoring. In: Proc. IEEE INFOCOM, pp. 1012–1019 (2001)

    Google Scholar 

  13. Jadbabaie, A., Lin, J., Stephen Morse, A.: Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE Transactions on Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  14. Kashyap, S., Ramamirtham, J., Rastogi, R., Shukla, P.: Efficient Constraint Monitoring Using Adaptive Thresholds. In: Proc. IEEE ICDE, pp. 526–535 (2006)

    Google Scholar 

  15. Kelly, F.P., Maulloo, A., Tan, D.K.H.: Rate Control for Communication Networks: Shadow Prices, Proportional Fairness, and Stability. Operational Research Society 49(3), 237–252 (1998)

    Article  MATH  Google Scholar 

  16. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-Efficient Distributed Monitoring of Thresholded Counts. In: Proc. ACM SIGMOD, pp. 289–300 (2006)

    Google Scholar 

  17. Kifer, D., Shai, B., Gehrke, J.: Detecting Change in Data Streams. In: Proc. VLDB, pp. 180–191 (2004)

    Google Scholar 

  18. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed data streams. In: Proc. ACM SIGMOD, pp. 563–574 (2003)

    Google Scholar 

  19. Poosala, V., Ioannidis, Y.: Selectivity Estimation Without The Attribute Value Independence Assumption. In: Proc. VLDB, pp. 486–495 (1997)

    Google Scholar 

  20. Sharfman, I., Schuster, A., Keren, D.: A Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams. In: Proc. ACM SIGMOD, pp. 301–312 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abbasi, A., Khonsari, A., Talebi, M.S. (2008). Flooding-Assisted Threshold Assignment for Aggregate Monitoring in Sensor Networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds) Distributed Computing and Networking. ICDCN 2009. Lecture Notes in Computer Science, vol 5408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92295-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92295-7_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92294-0

  • Online ISBN: 978-3-540-92295-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics