Abstract
In this paper we introduce the variable fitness function which can be used to control the search direction of any search based optimisation heuristic where more than one objective can be defined, to improve heuristic performance. The method is applied to a multi-objective travelling salesman problem and the performance of heuristics enhanced with the variable fitness function is compared to the original heuristics, yielding significant improvements. The structure of the variable fitness functions is analysed and the search is visualised to better understand the process.
This work was funded by EPSRC and @Road Ltd, a Trimble Company under an EPSRC CASE studentship, which was made available through and facilitated by the Smith Institute for Industrial Mathematics and System Engineering.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operational Research 24(11), 1097–1100 (1997)
Tsang, E., Voudouris, C.: Fast local search and guided local search and their application to British Telecom’s workforce scheduling problem. Operations Research Letters 20(3), 119–127 (1997)
Aarts, E.H.L., Korst, J.H.M.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Computing. Whiley, Chichester (1989)
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)
Kolisch, R., Hartmann, S.: Experimental Investigations of Heuristics for RCPSP: An Update. European Journal of Oper. Res. 174(1), 23–37 (2006)
Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Oper. Res. 130(3), 449–467 (2001)
Burke, E.K., Cowling, P.I., Keuthen, R.: Effective Local And Guided Variable Neighbourhood Search Methods for the Asymetric Travelling Salesman Problem. Applications Of Evolutionary Computing. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 203–212. Springer, Heidelberg (2001)
Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimisation. European Journal of Operational Research 137(1), 50–71 (2002)
Johnston, D.S., McGeoch, L.A.: The Travelling Salesman Problem: a case study in local optimisation. In: Aarts, E.J.L., Lenstra, J.k. (eds.) Local Search in Combinatorial Optimisation. Wiley, London (1997)
Potgieter, G., Engelbrecht, A.P.: Genetic Algorithms for the Structure Optimisation of learned Polynomial Expressions. Applied Mathematics and Computation 186(2), 1441–1466 (2007)
Shimojika, K., Fukuda, T., Hasehawa, Y.: Self-Tuning Fuzzy Modeling with adaptive membership function, rules, and hierarchical structure-based on Genetic Algorithm. Fuzzy Sets And Systems 71(3), 295–309 (1995)
Reeves, C.R.: Genetic Algorithms and Combinatorial Optimization. In: Rayward-Smith, V.J. (ed.) Applications of Modern Heuristic Methods, Alfred Waller, Henley-on-Thames, pp. 111–125 (1995)
Yao, X.: Evolving artificial neural networks. Proceedings Of The IEEE 87(9), 1423–1447 (1999)
Croes, G.A.: A Method for Solving Traveling Salesman Problems. Operations Res. 6, 791–812 (1958)
Corne, D., Ross, P.: Peckish Initialisation Strategies for Evolutionary Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 227–240. Springer, Heidelberg (1996)
Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver, http://www.tsp.gatech.edu/concorde.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Remde, S., Cowling, P., Dahal, K., Colledge, N. (2008). Evolution of Fitness Functions to Improve Heuristic Performance. In: Maniezzo, V., Battiti, R., Watson, JP. (eds) Learning and Intelligent Optimization. LION 2007. Lecture Notes in Computer Science, vol 5313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92695-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-92695-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92694-8
Online ISBN: 978-3-540-92695-5
eBook Packages: Computer ScienceComputer Science (R0)