Skip to main content

A Continuous Characterization of Maximal Cliques in k-Uniform Hypergraphs

  • Conference paper
Learning and Intelligent Optimization (LION 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5313))

Included in the following conference series:

Abstract

In 1965 Motzkin and Straus established a remarkable connection between the local/global maximizers of the Lagrangian of a graph G over the standard simplex Δ and the maximal/maximum cliques of G. In this work we generalize the Motzkin-Straus theorem to k-uniform hypergraphs, establishing an isomorphism between local/global minimizers of a particular function over Δ and the maximal/maximum cliques of a k-uniform hypergraph. This theoretical result opens the door to a wide range of further both practical and theoretical applications, concerning continuous-based heuristics for the maximum clique problem on hypergraphs, as well as the discover of new bounds on the clique number of hypergraphs. Moreover we show how the continuous optimization task related to our theorem, can be easily locally solved by mean of a dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, L.E., Eagon, J.A.: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73, 360–363 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41, 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baum, L.E., Sell, G.R.: Growth transformations for functions on manifolds. Pacific J. Math. 27, 211–227 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berge, C.: Hypergraphs. Combinatorics of Finite Sets. Ed. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  5. Blakley, G.R.: Homogeneous nonnegative symmetric quadratic transformations. Bull. Amer. Math. Soc. 70, 712–715 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bomze, I.M., Pelillo, M., Giacomini, R.: Evolutionary approach to the maximum clique problem: empirical evidence on a larger scale. Developments in Global Optimization, 95–108 (1997)

    Google Scholar 

  7. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Handbook of Combinatorial Optimization (Supplement Volume A), pp. 1–74 (1999)

    Google Scholar 

  8. Bomze, I.M., Budinich, M., Pelillo, M., Rossi, C.: Annealed replication: a new heuristic for the maximum clique problem. Discr. Appl. Math. 121(1-3), 27–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Budinich, M.: Exact bounds on the order of the maximum clique of a graph. Discr. Appl. Math. 127, 535–543 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bunke, H., Dickinson, P.J., Kraetzl, M.: Theoretical and Algorithmic Framework for Hypergraph Matching. In: ICIAP, pp. 463–470 (2005)

    Google Scholar 

  11. Faugeras, O.D., Berthod, M.: Improving consistency and reducing ambiguity in stochastic labeling: an optimization approach. IEEE Trans. Pattern Anal. Machine Intell. 3, 412–424 (1981)

    Article  MATH  Google Scholar 

  12. Frankl, P., Rödl, V.: Hypergraphs do not jump. J. Combinatorica 4, 149–159 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gibbons, L.E., Hearn, D.W., Pardalos, P.M.: A continuous based heuristic for the maximum clique problem. In: Cliques, Coloring and Satisfiability: 2nd DIMACS Impl. Chall., vol. 26, pp. 103–124 (1996)

    Google Scholar 

  14. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V.: Continuous characterizations of the maximum clique problem. Math. Oper. Res. 22, 754–768 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khot, S.: Improved inapproximability results for maxclique, chromatic number and approximate graph coloring. In: Proc. of 42nd Ann. IEEE Symp. on Found. of Comp. Sc., pp. 600–609 (2001)

    Google Scholar 

  16. Mohammed, J.L., Hummel, R.A., Zucker, S.W.: A gradient projection algorithm for relaxation labeling methods. IEEE Trans. Pattern Anal. Machine Intell. 5, 330–332 (1983)

    Article  Google Scholar 

  17. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533–540 (1965)

    Article  MATH  Google Scholar 

  18. Mubay, D.: A hypergraph extension of Turán’s theorem. J. Combin. Theory B 96, 122–134 (2006)

    Article  Google Scholar 

  19. Papa, D.A., Markov, I.: Hypergraph Partitioning and Clustering. In: Approximation Algorithms and Metaheuristics, pp. 61.1– 61.19 (2007)

    Google Scholar 

  20. Pardalos, P.M.: Continuous approaches to discrete optimization problems. In: Nonlinear Optimization and Applications, pp. 313–328 (1996)

    Google Scholar 

  21. Pardalos, P.M., Phillips, A.T.: A global optimization approach for solving the maximum clique problem. Int. J. Comput. Math. 33, 209–216 (1990)

    Article  MATH  Google Scholar 

  22. Pavan, M., Pelillo, M.: Generalizing the Motzkin-Straus theorem to edge-weighted graphs, with applications to image segmentation. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 485–500. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Pelillo, M.: Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Networks 2, 313–328 (1995)

    Google Scholar 

  24. Pelillo, M., Jagota, A.: Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Networks 2, 411–420 (1995)

    Google Scholar 

  25. Rota Bulò, S., Pelillo, M.: A Continuous Characterization of Maximal Cliques in k-uniform Hypergraphs Tech. Report CS-2007-4, “Ca’ Foscari” University of Venice (2007)

    Google Scholar 

  26. Sos, V.T., Straus, E.G.: Extremal of functions on graphs with applications to graphs and hypergraphs. J. Combin. Theory B 63, 189–207 (1982)

    MATH  Google Scholar 

  27. Turán, P.: On an extremal problem in graph theory (in Hungarian). Mat. ès Fiz. Lapok 48, 436–452 (1941)

    Google Scholar 

  28. Wilf, H.S.: The eigenvalues of a graph and its chromatic number. J. London Math. Soc. 42, 330–332 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wilf, H.S.: Spectral bounds for the clique and independence numbers of graphs. J. Combin. Theory Ser. B 40, 113–117 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, embedding. Neural Inform. Proc. Systems 19 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rota Bulò, S., Pelillo, M. (2008). A Continuous Characterization of Maximal Cliques in k-Uniform Hypergraphs. In: Maniezzo, V., Battiti, R., Watson, JP. (eds) Learning and Intelligent Optimization. LION 2007. Lecture Notes in Computer Science, vol 5313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92695-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92695-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92694-8

  • Online ISBN: 978-3-540-92695-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics