Skip to main content

An Adaptive Memory-Based Approach Based on Partial Enumeration

  • Conference paper
Learning and Intelligent Optimization (LION 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5313))

Included in the following conference series:

  • 834 Accesses

Abstract

We propose an iterative memory-based algorithm for solving a class of combinatorial optimization problems. The algorithm generates a sequence of gradually improving solutions by exploiting at each iteration the knowledge gained in previous iterations. At each iteration, the algorithm builds an enumerative tree and stores at each tree level a set of promising partial solutions that will be used to drive the tree exploration in the following iteration.

We tested the effectiveness of the proposed method on an hard combinatorial optimization problem arising in the design of telecommunication networks, the Non Bifurcated Network Design Problem, and we report computational results on a set of test problems simulating real life instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barahona, F.: Network design using cut inequalities. SIAM Journal on Optimization 6(3), 823–837 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartolini, E., Mingozzi, A.: Algorithms for the non-bifurcated capacitated network design problem. Report, Computer Science, Univ. of Bologna (2006)

    Google Scholar 

  3. Duin, C., Voß, S.: The pilot method: A strategy for heurisic repetition with application problem in graphs. Networks 34, 181–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghamlouche, I., Crainic, T.G., Gendreau, M.: Cycle-based neighbourhoods for fixed-charge capacitated multicommodity network design. Operations Rsearch 51(4), 655–667 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 3–51. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)

    Book  MATH  Google Scholar 

  7. Greistorfer, P., Rego, C.: a simple filter-and-fan approach to the facility location problem. Computers & Operations Research 33, 2590–2601 (2006)

    Article  MATH  Google Scholar 

  8. Kousik, I., Ghosh, D., Murthy, I.: A heuristic procedure for leasing channels in telecommunications networks. The Journal of The Operational Research Society 44(7), 659–672 (1993)

    Article  MATH  Google Scholar 

  9. Magnanti, T.L., Mirchandani, P., Vachani, R.: Modeling and solving the two-facility capacitated network loading problem. Operations Research 43, 142–157 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J. on Computing 11(4), 358–369 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maniezzo, V., Milandri, M.: An ant-based framework for very strongly constrained problems. In: ANTS 2002: Proceedings of the Third International Workshop on Ant Algorithms, pp. 222–227. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartolini, E., Maniezzo, V., Mingozzi, A. (2008). An Adaptive Memory-Based Approach Based on Partial Enumeration. In: Maniezzo, V., Battiti, R., Watson, JP. (eds) Learning and Intelligent Optimization. LION 2007. Lecture Notes in Computer Science, vol 5313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92695-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92695-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92694-8

  • Online ISBN: 978-3-540-92695-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics