Skip to main content

On Effectively Finding Maximal Quasi-cliques in Graphs

  • Conference paper
Learning and Intelligent Optimization (LION 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5313))

Included in the following conference series:

Abstract

The problem of finding a maximum clique in a graph is prototypical for many clustering and similarity problems; however, in many real-world scenarios, the classical problem of finding a complete subgraph needs to be relaxed to finding an almost complete subgraph, a so-called quasi-clique. In this work, we demonstrate how two previously existing definitions of quasi-cliques can be unified and how the resulting, more general quasi-clique finding problem can be solved by extending two state-of-the-art stochastic local search algorithms for the classical maximum clique problem. Preliminary results for these algorithms applied to both, artificial and real-world problem instances demonstrate the usefulness of the new quasi-clique definition and the effectiveness of our algorithms.

Holger Hoos acknowledges support provided by the Natural Sciences and Engineering Research Council of Canada (nSERC) under Discovery Grant 238788-05; Mauro Brunato and Roberto Battiti acknowledge support by the project CASCADAS (IST-027807) funded by the FET Program of the European Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matsuda, H., Ishihara, T., Hashimoto, A.: Classifying molecular sequences using a linkage graph with their pairwise similarities. Theoretical Computer Science 210(2), 305–325 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abello, J., Resende, M., Sudarsky, S.: Massive quasi-clique detection. In: Proceedings of the 5th Latin American Symposium on Theoretical Informatics (LATIN), pp. 598–612 (2002)

    Google Scholar 

  3. Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques. In: Conference on Knowledge Discovery in Data, pp. 228–238 (2005)

    Google Scholar 

  4. Serrano, M., Boguñá, M.: Clustering in complex networks. I. General formalism. Arxiv preprint cond-mat/0608336 (2006)

    Google Scholar 

  5. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks (2004)

    Google Scholar 

  6. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  7. Everett, M., Borgatti, S.: Analyzing clique overlap. Connections 21(1), 49–61 (1998)

    Google Scholar 

  8. Du, N., Wu, B., Xu, L., Wang, B., Pei, X.: A Parallel Algorithm for Enumerating All Maximal Cliques in Complex Network. In: Sixth IEEE International Conference on Data Mining Workshops, ICDM Workshops 2006, pp. 320–324 (2006)

    Google Scholar 

  9. Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research 25, 159–185 (2006)

    MATH  Google Scholar 

  10. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica 29(4), 610–637 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Battiti, R., Mascia, F.: Reactive local search for maximum clique: a new implementation. Technical Report DIT-07-018, University of Trento (2007)

    Google Scholar 

  12. Glover, F.: Tabu search - part i. ORSA Journal on Computing 1(3), 190–260 (1989)

    Article  MATH  Google Scholar 

  13. Glover, F.: Tabu search - part ii. ORSA Journal on Computing 2(1), 4–32 (1990)

    Article  MATH  Google Scholar 

  14. Pullan, W.: Phased local search for the maximum clique problem. Journal of Combinatorial Optimization 12(3), 303–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunato, M., Hoos, H.H., Battiti, R. (2008). On Effectively Finding Maximal Quasi-cliques in Graphs. In: Maniezzo, V., Battiti, R., Watson, JP. (eds) Learning and Intelligent Optimization. LION 2007. Lecture Notes in Computer Science, vol 5313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92695-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92695-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92694-8

  • Online ISBN: 978-3-540-92695-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics