Data Locality Aware Strategy for Two-Phase
Collective I/0

Rosa Filgueirg, David E.Singh, Juan C. Pichel, Florin Isaila, andi3eGarretero

Universidad Carlos Il de Madrid
Department of Computer Science
{rosaf,desingh,jcpichel,florin,jcarrét@arcos.inf.uc3m.es

Abstract. This paper presents Locality-Aware Two-Phase (LATP) 1/O, an opti-
mization of the Two-Phase collective 1/0 technique from ROMIO, the mopt p
ular MPI-10 implementation. In order to increase the locality of the file s&sE®s
LATP employs the Linear Assignment Problem (LAP) for finding an optidis:
tribution of data to processes, an aspect that is not considered in threabtégh-
nigue. This assignment is based on the local data that each processsstdihas

as main purpose the reduction of the number of communication involveein th
I/O collective operation and, therefore, the improvement of the glotesdigion
time. Compared with Two-Phase 1/O, LATP I/O obtains important improveme

in most of the considered scenarios.

1 Introduction

Alarge class of scientific applications operates on a hidgtinae of data that needs to be
persistently stored. Parallel file systems such as GPFSIPAS]S [11] and Lustre [12]
offer scalable solutions for concurrent and efficient astestorage. These parallel file
systems are accessed by the parallel applications throwgticces such a@30SIXor
MPI-IO. This paper targets the optimization of the MPI-10 inteefagside ROMIO,
the most popular MPI-10 distribution.

Many parallel applications consist of alternating comparne /O phases. During
the 1/0 phase, the processes frequently access a commosealtaigy issuing a large
number of small non-contiguous I/O requests [19, 20]. UgUdiese requests originate
an important performance slowdown of the I/O subsystemeCite I/O addresses this
problem by merging small individual requests into largesbgll requests in order to
optimize the network and disk performance. Depending opliiee where the request
merging occurs, one can identify two collective I/O methdtithe requests are merged
at the I/0O nodes the method is calldigk-directed I/(7, 21]. If the merging occurs at
intermediary nodes or at compute nodes the method is dallegbhase 1/J3, 2].

In this work we focus on th&wo-Phase I/Qechnique, extended by Thakur and
Choudhary inrROMIC[10]. Based on it we have developed and evaluated duality-
Aware Two-Phase I/QLATP 1/O) technique in which file data access is dependent on
the specific data distribution of each process. The conqraristh the original version
of Two-Phase I/0O shows that our technique obtains an impborta time reduction .

* Candidate to the Best Student Paper Award

This is achieved by increasing the locality of the first phase, therefore, reducing the
number of communication operations.

This paper is structured as follows. Section 2 contains ¢teted work. Section 3
explains in detail the internal structure Bivo-Phase I/OSection 4 contains the de-
scription of theLocality-Aware Two-Phase 1/C5ection 5 is dedicated to performance
evaluations. Finally, in Section 6 we present the main asichs derived from this
work.

2 Related work

There are several collective 1/0 implementations, basetherassumption that sev-
eral processes access concurrently, interleaved andvestapping a file (a common
case for parallel scientific applications). In disk-diegtti/O [7], the compute nodes
fordward file requests to the 1/0O nodes. The 1/O nodes merdesart the requests be-
fore sending them to disk. In server-directed I/O of Pand3, [he 1/0 nodes sort the
requests on file offsets instead of disk addresFa®-Phase 1/d3, 2] consists of an
access phase, in which compute nodes exchange data witletegsiem according to
the file layout, and a shuffle phase, in which compute nodéstréxite the data among
each other according to the access pattern. We presentrthismentation of theses
technique in ROMIO in the next section. Using Lustre file joq(merging two files
into one) for improving collective 1/O is presented in [22].

Several researchers have contributed with optimizatidnsi®Bl-IO data opera-
tions: data sieving [10], non-contiguous access [16].embive caching [17], cooperat-
ing write-behind buffering [18], integrated collectivé®l&and cooperative caching [14].

3 Internal structure of Two-Phase I/O

As its name suggest$wo-Phase collective I/©onsists of two phases: a shuffle phase
and an I/O phase. In the shuffle phase, small file requestsachéntp larger ones. In
the second phase, contiguous transfers are performed torottfie file system.

Before these two phasebywo-Phase I/Qlivides the file region between the mini-
mum and maximum file offsets of accesses of in equal contiguegions,calledrile
Domains(FD) and assigns each FD to a configurable subset of compdesnoalled
aggregators. Each aggregator is responsible for aggnegalii the data inside its as-
signed FD and for transferring the FD to or from the file system

In the implementation offwo-Phase I/Ghe assignment of FD to aggregators is
fixed, independent of distribution of data over the compuwdes. In contrast, based
the processor data distribution, LATP minimises the totdline of communications.
By means of this strategy it is possible to reduce the comaatioin and, therefore, the
overall I/O time.

We ilustrate thelwo-Phase I/Qtechnique through an example of a vector of 16
elements that is written in parallel by 4 processes (seer€iglto a file. The size
of one element is 4. Each process has previously declaregraon the file, i.e. non-
contiguous regions are “seen” as if they were contiguousiristance, process 0 “sees”
the data at file offsets 0-3 and 20-23 contiguously, as vidsets 0-7.

Process 0 view Process 1 view Process 2 view Process 3 vit
0 4 8 12 4 8

0 4 8 12 0 4 8 12

[TTTTTTTTTTRRERR NN
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 €

File containing the vector

Fig. 1. File access example.

=

O(byte) 16(byte) B2(byte) A8(byte) /63(byte)
JUCEE T NN EHEE

Lenght_FD=16

[FD for Process 0 FD_begin “ﬁ

M FD for process 1
[] FD for process 2 -15 31[47(63
[] FD for process 3 FD_end

Fig. 2. Assignment of file domain

Before performing the two mentioned phases, each procedgzas, which parts
of the file are stored locally by creating a list of offsets distiof lengths. According
to the example, process 0 is assigned three intenalfseg0, length=4), (offset=20,
length=8), (offset40, length=4). The list of offsets for this process i, 20, 4¢ and
the list of lengths is{4, 8, 4}.

In addition, each process calculates the first and last byttee@accessed intervl. In
our example, the first byte that process 0 has stored is 0 anldshbyte is 43. Next,
all processes exchange these values and compute the maxdndiminimum of file
access range, in this case 0 and 63, respectively. Theahtethen divided in to equal-
sized FDs. If all 4 compute nodes are aggregators, it willibigled in 4 chunks of 16
bytes, one for each aggregator. Each chunk is assigned hoaggregator according
to its rank value. That is, block 0 is assigned to process wittk O, block 1 to rank
1, etc. Each chunk (FD) is written to file by the assigned mecEor performing this
operation, each process needs all the data of its FD. If thateeare stored in other
processes, they are exchanged during the communicatice pha

Once the size of each FD is obtained, two lists with so manitipas as number of
processes are created. The first list indicates the begjrofithe FD of each process.
The second one indicates the final of the FD of each procegsrd=2 shows how the
vector is divided into different FDs. Each FD has been assigndifferent color. Also,
it can be observed that the assignment of FD is independahedbcal data of each
process. This scheme is inefficient in many situations. kamgple, the FD for process
3, begins at byte 48 and finalizes at byte 63. All these datatared in the process 2, so
this implies unnecessary communications between procasd 3, because the process
2 has to send all this data to process 3, insted of writingdigé.

Once each process knows all the referring data, it analyzleish data from its
FD is not locally stored and what communication has be to kebéshed in order to
gather the data. This stage is reflected in Figure 3. Thisdighows the data of the P
vector that each process has locally stored. For any prateseector elements labeled
'R’ are received and the ones labled 'S’ are sent. The arregsesent communication
operations.

For example, in Figure 3, process 0 needs three elementanthagtored in the
process 3, and has stored three elements that processe®haad. In the following
step ofTwo-Phase I/Qechnique, the processes exchange the previously caddata.
Once all the processes have the data of their FD, they writie twchunk of consecutive
entries as shown in Figure 4. Each process transfers onlycontguous region to
file (its FD), thus, reducing the number of I/O requests angrawing the overall /O
performance.

4 Locality aware strategy for Two-Phase 1/0O

As explained in Section 3Two-Phase I/Omakes a fixed assignment of the FDs to
processes. With theA-Two-Phase I/Qeplaces the rigid assignment of the FDs by
an assignment dependent of the initial distribution of th&adver the processes. Our
approach is based on the Linear Assignment Problem.

4.1 Linear Assignment Problem

TheLinear Assignment Proble(bAP) is a well studied problem in linear programming
and combinatorial optimization. LAP computes the optinsgigment of: items ton
elements given an x n cost matrix. In other words, LAP selectselements of the
matrix (for instance, the matrix from Table 1), so that thisrexactly one element in
each row and one in each column, and the sum of the corresgpodsts is maximum.

The problem of finding the best interval assignment to thetig processes can
be efficiently solved by applying the existing solutionstubtproblem. In our case, the
LAP tries to assign FDs to processes, by maximizing the gigtn that we want to
assign to the process the interval, for which it has morel idata.

PO in process 0

Recv process 0 =3
Send process 0 =3

PO in process 1

Recv process 1=3
Send process 1=3

PO in process 2

Recv process 2 =4
Send process 2 = 4

PO in process 3

Recv process 3 = 4
Send process 3 =4

Fig. 3. Data transfers between processes

P0inprocesso‘ ‘ ‘ ‘ . ‘ -:_
[TJZZ] Buffer /0 process 0

PO in process 1--]]]]]:.:-
Eﬂﬂ Buffer 1/0O process 1
PO in process 2 --- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Buifer I/O process 2
PO in process 3 .:D:-.:--]]]]

Buffer 1/O process 3

Pin disk ‘1 ‘2 ‘3 ‘4 ‘5‘6 ‘7 ‘8 ‘9 ‘10‘11‘12‘13‘14‘15‘16‘

Fig. 4. Write of data in disk.

A large number of algorithms, sequential and parallel, Ha@en developed for
LAP. We have selected for our work the following algorithrasnsidered to be the
most representative ones:

— Hungarian algorithm[1]: This is the first polynomial-time primal-dual algorith
that solves the assignment problem. The first version wamnied and published

by Harold Kuhn in 1955 and has@(n*) complexity. This was revised by James
Munkresin 1957, and has been known since as the Hungariarithlg, the Munkres
assignment algorithm, or the Kuhn-Munkres algorithm.

Jonker and Volgenant algorith®]: They develop a shortest augmenting path al-

gorithm for the linear assignment problem. It contains neitidlization routines
and a special implementation of Dijkstra’s shortest paththod For both dense
and sparse problems computational experiments they shievaltprithm to be
uniformly faster than the best algorithms from the literatut has aO(n?®) com-
plexity.

— APC and APS Algorithné]: These codes implement the Lawlérn?)) version
of the Hungarian algorithm by Carpenato, Martello and T&RC works on a
complete cost matrix, while APS works on a sparse one.

4.2 LA-Two-Phase I/O

In order to explairLA-Two-Phase I/Qwe use the example for Section 2 with the same

data and distribution as in Figure 1.

The proposed technique differs from the original versiothim assignment of the
FDs to processes. Each FD is assigned based on the digritaftthe local data of
processes. In order to compute this initial distributidve humber of intervals in which
we can divide the file is computed. This is made by dividing siee of the access
interval by the sizes of the FD. In our example, the numbeniafrivals is equal to four.

The next step consists in assigning each interval to eaaepscefficiently. First, a
matrix is constructed, with as many rows as processes, anthag columns as inter-
vals. Each matrix entry contains the number of elementsahelh process has stored.
The matrix from our example is shown in Table 1.

O(byte 16(byte 2(byte 8(byte 3(byte)
pol|@ (3|3 |3f1 |00 311 |0 1|22 22
Lenght_FD=16

[FD for processor 3 FD_begin “

[FD for processor 0
] FD for processor 1

;
] FD for processor 2 FD_end
Intervals n

Fig. 5. Assignment of file domain for LA-Two-Phase 1/O.

PO in process 0

Recv process 0 = 2
Send process 0 = 2

PO in process 1

Recv process 1 =1
Send process 1 =1

PO in process 2

Recv process 2 =0
Send process 2 =0

PO in process 3

Recv process 3 =1
Send process 3 = 1

Fig. 6. Transfers of data between processes in LA-Two-Phase 1/0.

Our technique is based on maximizing the aggregator Igchajitapplying a LAP
algorithm and obtaining a list with the assignment of in&dswto processes. For our

example, the assignment list{i8, 0, 1, 2 as indicated Figure 5. This list represents the
interval that has been assigned to each process.

This strategy reduces the number of communication op@statue to the fact that
each process increases the amount of locally assigneddeaollowing phases of
the LA-Two-Phase I/Care the same as those of the original version. Figure 6 shows
the communication operations between processes. In thespanding step of original
Two-phase I/Qshown in Figure 3, process 2 sends four elements and reckiuve
elements. With our technique, the number of transfers afes® 2 has been reduced to

none (see Figure 6). In this example the LA-Two-Phase |/@Qcesd the overall transfers
from 28 exchanged elements to 8.

[Interval/Procesi) 1 [2 3 |
0 1 2 1 0
1 0 1 3 0
2 0 0 0 4
3 3 1 0 0

Table 1. Number of elements of each interval.

ronoess [T | I
Eﬂﬂ Buffer 1/0 process 0
EEER B

N
Buffer 1/O proces$s 1 ﬂ
PO in process 2 _- ‘ ‘ ‘ ‘ ‘ ‘ ‘
Buffer 1/O process 2
. Buffer 1/0 process 3

P in disk ‘1 ‘2 ‘3 ‘4 ‘5‘6 ‘7 ‘8 ‘9 ‘10‘11‘12‘13‘14‘15‘16‘

PO in process 1

Fig. 7. Write of data in disk in LA-Two-Phase /0.

Figure 7 shows the 1/O phase loA-Two-Phase 1/0OIn the same way that as in the
original technique, each process writes to file a contigutaia region.

5 Performance Evaluation

The evaluations in this paper were performed by using theSBIP application with
different input meshes related to different semicondudeyices. We have compared
LATP 1/O with the original version of the techniquevo-Phase I/Gmplemented in
MPICH.

The tests have been made in Magerit cluster, installed iICE®VIMA supercom-
puting center. Magerit has 1200eServer BladeCenter J8202ddes, and each node
has two processors IBM 64 bits PowerPC single-core 970FXingnat 2.2 GHz and
having 4GB RAM and 40GB HD. The interconnection network isrvgt.

We have used the MPICHGM 2.7.15NOGM distribution for theibaaplementa-
tion of Two-Phase I/OWe have developed our technique by modifying this code. The
parallel file system used is PVFS 1.6.3 with one metadataesand 8 1/0 nodes with
a striping factor of 64KB.

The remainder of this section is divided as follows. Subiead.1 briefly overviews
the BIPS3D application. Subsection 5.2 contains the etialuaf the linear assignment
technique. Finally, the evaluation bA-Two-Phase 1/Gs presented in subsection 5.3.

5.1 BIPS3D Simulator

BIPS3Dis a 3-dimensional simulator of BJT and HBT bipolar devicgs The goal of
the 3D simulation is to relate electrical characteristithe device with its physical
and geometrical parameters. The basic equations to bedsateePoisson’s equation
and electron and hole continuity in a stationary state.

Finite element methods are applied in order to discretiedlthisson equation, hole
and electron continuity equations by using tetrahedrahelgs. The result is an un-
structured mesh. In this work, we have used four differerghne, as described later.

lhAesh/Load “Tneshl[7nesh2[7nesh3[7nesh4|

100 18 12 28 110
200 36 25 56 221
500 90 63 140 |552

Table 2.Size in MB of each file based on the mesh and loads.

Using the METIS library, this mesh is divided into sub-don®iin such a man-
ner that one sub-domain corresponds to one process. Thetegxis decoupling the
Poisson equation from the hole and electron continuity ggs They are linearized
by Newton method. Then we construct, for each sub-domaia parallel manner, the
part corresponding to the associated linear system. Eatérays solved using domain
decomposition methods. Finally, the results are writteta tile. For our evaluation
BIPS3D has been executed using four different meshesh1 (47200 nodes)nesh?2
(32888 nodes)nesh3 (732563 nodes) antlesh4 (289648 nodes), with different num-
ber of processes: 8, 16, 32 and 64. The BIPS3D associatea atdature to each node
of a mesh. The contents of these data structures are the dtnvo disk during the
I/O phase. The number of elements that this structure hasgmér mesh entry is given
by theload parameter. This means that, given a mesh and a load, the naihtata
written is the product of the number of mesh elements andaae. lin this work we
have evaluated different loads, concretely, 100, 200 afd Bible 2 lists the different
sizes (in MB) of each file based on load and mesh charactsisti

5.2 Performance of the Linear Assignment Problem

We have applied all the LAP algorithms described in Sectido 4ur problem. We
have noticed that in all cases all algorithms produce theesassignment (of FDs to
processes). The only difference between them is the timengate the optimal al-
location. Figure 8 shows the normalized execution timeiritakhe APC algorithm as
the reference technique) for solving the interval distiiou using different number of
processes anabesh1 data distribution. Note that the fastest algorithm is thekéo and

Volgenant, and for this reason we have chosen it to applyAiTwo-Phase 1/0

5.3 Performance evaluation of LA-Two-Phase 1/O

Figure 9 shows the percentage of reduction of communicafiorLA-Two-Phase 1/0
over Two-Phase I/dJor meshl, mesh2, mesh3 andmesh4 and different numbers of
processes. We can see that, when LATP is applied, the voldirransferred data is
considerably reduced.

In the first step of our study we have analyzed Tm®-Phase I/Qidentifying the
stages of the technique that are more time-consuming. HgestofTwo-Phase /O
are:

— Offsets and lengths calculation (st1) this stage the list of offsets and lengths of
the file is calculated.

1,5 yOAPC mHungarian OAPS B Jonker

o]
g 07

01 4 8 16 32 64
Number of processes

Fig. 8. Time for computing the optimal allocation fatesh1.

— Offsets and lengths communication (s2ach process communicates its start and
end offsets to the other processes. In this way all procéssesglobal information
about the involved file interval.

— Interval assignment (st3Yhis stage only exists ihA-Two-Phase I/OFirst, it cal-
culates the number of intervals into which we can divide tlee éind then, it assigns
intervals to processes by applyihgnear Assignment Problelisee Table 1).

— File domain calculation (st4)The 1/O workload is divided among processes (see
Figure 2). This is done by dividing the file into file domainDd). In this way,
in the following stages, each aggregator collects and feasiso the file the data
associated to its FD.

— Access request calculation (st3) calculates the access requests for the file do-
mains of remote processes.

— Metadata transfer (st6)Transfer the lists of offsets and lengths.
— Buffer writing (st7) The data are sent to appropriate processes (see Figure 3).
— File writing (st8) The data are written to file (see Figure 4).

—
o
I
‘® 8 processes [16 processes
£ 50 - M 32 processes M 64 processes
T o 45
g% 40
oo
> o 35
29 304
28 2
= £ 20 A
5 ©
s 151
o
=) 10 A
k]
c 5 1
§ 0+ : . .
S Mesh1 Mesh2 Mesh3 Mesh4

Fig. 9. Percentage reduction of transferred data volumerfesh1, mesh2, mesh3 andmesh4.

Esti-st5 mst6 Ost7 Est8 Est1-st5 Wst6 Ost7 Ost8

= =

@ (b)

Fig. 10. Stages of Two-Phase 1/O feneshl: (a) with load 100 and 16 processes and (b) with
load 100 and 64 processes.

The buffer and file writing stages (st7 and st8), are repeasathany times as the
following calculus indicates: the size of the file portionezch process is divided by
the size of theTwo-Phase I/Couffer (4 MB in our experiments). First, the write size
of each process is obtained by dividing the size of the filehgyrtumber of processes.
For example, formesh4 with load 500 and using 8 processes the size of the file is 552
MB (see table 2). Therefore, the write size of each proce8 MB. Then, the file size
related to each process is divided to the buffer sizé&wdb-Phase I/OConsequently,
the number of times is given by this value divided by 4MB, fustexample is 18.

Figure 10 represents the percentage of tim&ed-Phase I/dor mesh1 with load
100, with 16 and 64 processes, respectively. The costsgésttl, st2, st3, st4 and st5
have been added up, and we have represented this value iguhesfas st1-st5.

As we can see in the Figures 10(a) and 10(b), the slowestsséagst6 and st7. Note
that the cost of the st6 stage increases with the number oépses. These figures show
the weight of the communication stages in fiveo-Phase I/Qechnique. Moreover, we
can see that the cost of these stages increases with the nahgvecessors. Based on
this, we conclude that this represents an important battleim this technique. For this
reason we have developed thA-Two-Phase I/Qechnique with the aim of reducing
the amount of communication. This technique reduces theagliime of Two-Phase
I/O.

LA-Two-Phase I/Qechnique improves the communication performance of sti6 an
st7 stages. Figure 11(a) shows the percentage of improwemstt stage forneshl,
for different loads and different number of processes.

In this figure we can see that the time of st6 stage is significa@duced in most
cases. In this stage each process calculates what regtiesisiprocesses lie in its file
domain and creates a list of offset and lengths for each pspeehich has data stored
in its FD. Besides, in this stage, each process sends thet afid length lists to the rest
of the processes. IbA-Two-Phase I/Qmany of the data that each process has stored
belong to its FD (given that data locality is increased) ametefore less offsets and
lengths are communicated.

Figure 11(b) depicts the time of stage st7. Note that, adhis,time is reduced
in most of cases. This is because in this stage, each proeeds the data that has

100 -
90 +
80 +
70 4
60 -
50 4
40

Il

-10 1 8 Processes 16 Processes 32 Processes 64 Processes

Wload 100 MLoad200 Oload 500 Hload 100 Mload 200 [Load 500

-y

.5 1 8 Processes 16 Processes 32 Processes 64 Processes

—

Percentage of improvement in Stage 7
N
o

Percentage of improvement in Stage 6

@ (b)
Fig. 11.Percentage of improvement foresh1: (a) in Stage 6 and (b) in Stage 7.

calculated in st6 stage to the appropriate processésAdfwo-Phase I/Omany of the
data that each process has stored belong to its FD, theréiesesend less data to the
other processes, reducing the number of transfers and thmeof data.

Figure 12 shows the overall percentage of improvement ofemimique formeshl,
mesh?2, mesh3 andmesh4 with 64 processes. In this figure, we included the time of all
stages. For this reason the percentage of improvement Ikesthan in previous stages.

‘l Load 100 W Load 200 OLoad 500‘ |

8 Processes 16 Processes 32 Processes 64 Processes

w
o

M Load 100 M Load 200 OLoad 500

w
S

N
a

N
o

o

o

o

Overall percentage of improvement
Overall percentage of improvement

o

8 Processes 16 Processes 32 Processes 64 Processes

(@) (b)

Mload 100 ®Load 200 OLoad 500 ‘

Jﬂﬂ.ﬂh

8 Processes 16 Processes 32 Processes 64 Processes 8 Processes 16 Processes 32 Processes 64 Processes

(© (d)

1 Eload 100 mLoad 200 TLoad 500‘

Overall percentage of improvement

Overall percentage of improvement
N
o
|

Fig. 12.Overall improvement for: (ajneshl (b) mesh2 (c) mesh3 and (d)mesh4.

Nevertheless, we can notice that in the majority cases dfis@m improvement in
the execution time foL A-Two-Phase I/Qechnique. The original technique performed
better in 4 of the 48 cases, but the loss was under 5% in allakesc It appears that,
for these cases (which represent less than 10% of the tihtaljlata locality happened
to be good enough in the original distribution and the adddi cost to find a better
distribution did not pay off.

It is important to emphasize that the additional cost of tee stage (st3) is very
small compared with the total time. The fraction of this stéwthe overall execution
time is small: in the best case itis 0.07% of the time=gh2, 8 processes and load 500)
and in the worst case the 7%ésh3, 64 processes and load 100).

6 Conclusions

In this paper a new technique calleé-Two-Phase I/Cbased on the local data that
each process stores is presented. First of all, we have shihaetheLA-Two-Phase
I/0 improves the overall performance, when compared to thénadigwo-Phase 1/0
The new stage (st3), which we have added to the techrigu®vo-Phase I/Ghas an
insignificant overhead in comparison to the total execuiime.

In the evaluation section we have shown that the greater augftprocesses, the
larger the improvement brought by our technique. Findll important to emphasize,
thatLA-Two-Phase I/@an be applied to every kind of data distribution.

Acknowledgements

This work has been partially funded by project TIN2007-6309 Spanish Ministry of
Education and project CCG07-UC3M/TIC-3277 of Madrid State/ernement.

References

1. S. S. Blackman. Multiple-Target Tracking with Radar ApplicationsD&uham,MA: Artech
House 1986.

2. R. Bordawekar. Implementation of Collective I/O in the Intel Paragamalie| File System:
Initial Experiences. IProc. 11th International Conference on Supercompytihdy 1997.
To appear.

3. J. del Rosario, R. Bordawekar, and A. Choudhary. Improwdlfel I/O via a two-phase
run-time access strategy. Rroc. of IPPS Workshop on Input/Output in Parallel Computer
Systemsl1993.

4. S. M. Giorgio Carpaneto and P. Toth. Algorithms and codes for tHgrament problem.
Annals of Operations Researct3(1):191-223, 1988.

5. R. Jonker and A. Volgenant. A Shortest Augmenting Path Algorithnbfarse and Sparse
Linear Assignment Problem€omputing 38(4):325-340, 1987.

6. G. Karypis and V. Kumar. METIS — A software package for partitignimstructured
graphs, partitioning meshes, and computing fill-reducing orderingsesée matrices. Tech-
nical report, Department of Computer Science/Army HPC ResearokeéJniversity of
Minnesota, Minneapolis, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. D. Kotz. Disk-directed I/O for MIMD Multiprocesses. Proc. of the First USENIX Symp.

on Operating Systems Design and Implementati®94.

. A. Loureiro, J. Gonalez, and T.F.Pena. A parallel 3d semiconductor device simulator for

gradual heterojunction bipolar transistodaurnal of Numerical Modelling: electronic net-
works, devices and field$6:53—-66, 2003.

. K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. iSdireeted collective 1/0

in Panda. IrProceedings of Supercomputing 95

R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Collective /&@MIO. In Proc.
of the 7th Symposium on the Frontiers of Massively Parallel Computgtages 182-189,
February 1999.

W. Ligon and R. Ross. An Overview of the Parallel Virtual File SystémProceedings of
the Extreme Linux Workshpjune 1999.

C. F. S. Inc. Lustre: A scalable, high-performance file systemstér File Systems Inc.
white paper, version 1.0, November 2002. http://www.lustre.org/dditgpaper.pdf.
Indiana University, http://www.lam-mpi.ord,AM website

F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and W. Tichy. Integga@ollective /0O and
Cooperative Caching into the “Clusterfile” Parallel File System.Ptaceedings of ACM
International Conference on Supercomputing (IG#)ges 315-324. ACM Press, 2004.

F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System fgel@omputing Clus-
ters. InProceedings of FAST002.

R. Thakur, W. Gropp, and E. Lusk. Optimizing Noncontiguous &ses in MPI-IOParallel
Computing 28(1):83-105, Jan. 2002.

W. keng Liao, K. Coloma, A. Choudhary, L. Ward, E. Russel, @n@ideman. Collective
Caching: Application-Aware Client-Side File Caching. Rroceedings of the 14th Interna-
tional Symposium on High Performance Distributed Computing (HRD@y 2005.

W. keng Liao, K. Coloma, A. N. Choudhary, and L. Ward. Coafiee Write-Behind Data
Buffering for MPI 1/O In PVM/MPI, pages 102—-109, 2005.

N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. FileeAs Characteristics
of Parallel Scientific Workloads. I EEE Transactions on Parallel and Distributed Systems,
7(10), Oct. 1996.

H. Simitici and D. Reed. A Comparison of Logical and Physical IR4ri2O Patterns. In
International Journal of High Performance Computing Applications,cg&dassue (1/O in
Parallel Applications), 12(3)1998.

K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. WinsletteiSdirected collective 1/0O
in Panda. IrProceedings of Supercomputing ‘95

W. Yu and J. Vetter and R. S. Canon and S. Jiang. Exploiting Lustrddtiieng for Effective
Collective I/O. INCCGRID ’'07: Proceedings of the Seventh IEEE International Symposiu
on Cluster Computing and the Grighages 267-274, Washington, DC, USA, 2007. IEEE
Computer Society.

