
Data Locality Aware Strategy for Two-Phase
Collective I/O

Rosa Filgueira⋆, David E.Singh, Juan C. Pichel, Florin Isaila, and Jesús Carretero

Universidad Carlos III de Madrid
Department of Computer Science

{rosaf,desingh,jcpichel,florin,jcarrete}@arcos.inf.uc3m.es

Abstract. This paper presents Locality-Aware Two-Phase (LATP) I/O, an opti-
mization of the Two-Phase collective I/O technique from ROMIO, the most pop-
ular MPI-IO implementation. In order to increase the locality of the file accesses,
LATP employs the Linear Assignment Problem (LAP) for finding an optimal dis-
tribution of data to processes, an aspect that is not considered in the original tech-
nique. This assignment is based on the local data that each process stores and has
as main purpose the reduction of the number of communication involved in the
I/O collective operation and, therefore, the improvement of the global execution
time. Compared with Two-Phase I/O, LATP I/O obtains important improvements
in most of the considered scenarios.

1 Introduction

A large class of scientific applications operates on a high volume of data that needs to be
persistently stored. Parallel file systems such as GPFS [15], PVFS [11] and Lustre [12]
offer scalable solutions for concurrent and efficient access to storage. These parallel file
systems are accessed by the parallel applications through interfaces such asPOSIXor
MPI-IO. This paper targets the optimization of the MPI-IO interface inside ROMIO,
the most popular MPI-IO distribution.

Many parallel applications consist of alternating computeand I/O phases. During
the I/O phase, the processes frequently access a common dataset by issuing a large
number of small non-contiguous I/O requests [19, 20]. Usually These requests originate
an important performance slowdown of the I/O subsystem. Collective I/O addresses this
problem by merging small individual requests into larger global requests in order to
optimize the network and disk performance. Depending on theplace where the request
merging occurs, one can identify two collective I/O methods. If the requests are merged
at the I/O nodes the method is calleddisk-directed I/O[7, 21]. If the merging occurs at
intermediary nodes or at compute nodes the method is calledtwo-phase I/O[3, 2].

In this work we focus on theTwo-Phase I/Otechnique, extended by Thakur and
Choudhary inROMIO[10]. Based on it we have developed and evaluated theLocality-
Aware Two-Phase I/O(LATP I/O) technique in which file data access is dependent on
the specific data distribution of each process. The comparison with the original version
of Two-Phase I/O shows that our technique obtains an important run time reduction .

⋆ Candidate to the Best Student Paper Award

This is achieved by increasing the locality of the first phaseand, therefore, reducing the
number of communication operations.

This paper is structured as follows. Section 2 contains the related work. Section 3
explains in detail the internal structure ofTwo-Phase I/O. Section 4 contains the de-
scription of theLocality-Aware Two-Phase I/O. Section 5 is dedicated to performance
evaluations. Finally, in Section 6 we present the main conclusions derived from this
work.

2 Related work

There are several collective I/O implementations, based onthe assumption that sev-
eral processes access concurrently, interleaved and non-overlapping a file (a common
case for parallel scientific applications). In disk-directed I/O [7], the compute nodes
fordward file requests to the I/O nodes. The I/O nodes merge and sort the requests be-
fore sending them to disk. In server-directed I/O of Panda [21], the I/O nodes sort the
requests on file offsets instead of disk addresses.Two-Phase I/O[3, 2] consists of an
access phase, in which compute nodes exchange data with the file system according to
the file layout, and a shuffle phase, in which compute nodes redistribute the data among
each other according to the access pattern. We present this implementation of theses
technique in ROMIO in the next section. Using Lustre file joining (merging two files
into one) for improving collective I/O is presented in [22].

Several researchers have contributed with optimizations of MPI-IO data opera-
tions: data sieving [10], non-contiguous access [16], collective caching [17], cooperat-
ing write-behind buffering [18], integrated collective I/O and cooperative caching [14].

3 Internal structure of Two-Phase I/O

As its name suggests,Two-Phase collective I/Oconsists of two phases: a shuffle phase
and an I/O phase. In the shuffle phase, small file requests merged into larger ones. In
the second phase, contiguous transfers are performed to or from the file system.

Before these two phases,Two-Phase I/Odivides the file region between the mini-
mum and maximum file offsets of accesses of in equal contiguous regions,calledFile
Domains(FD) and assigns each FD to a configurable subset of compute nodes, called
aggregators. Each aggregator is responsible for aggregating all the data inside its as-
signed FD and for transferring the FD to or from the file system.

In the implementation ofTwo-Phase I/Othe assignment of FD to aggregators is
fixed, independent of distribution of data over the compute nodes. In contrast, based
the processor data distribution, LATP minimises the total volume of communications.
By means of this strategy it is possible to reduce the communication and, therefore, the
overall I/O time.

We ilustrate theTwo-Phase I/Otechnique through an example of a vector of 16
elements that is written in parallel by 4 processes (see Figure 1) to a file. The size
of one element is 4. Each process has previously declared a view on the file, i.e. non-
contiguous regions are “seen” as if they were contiguous. For instance, process 0 “sees”
the data at file offsets 0-3 and 20-23 contiguously, as view offsets 0-7.

��������

�������� ���������������� ��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12

0 4 8 12	 16 20 24 28 32 36 40 44 48 52 56 60

���� ���� �������� ���� ���� �
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Process 0 view Process 1 view Process 2 view Process 3 view

File containing the vector

Fig. 1.File access example.

P0 0 33 33 33 33 1 00 11 22 22 2211 2’2

Lenght_FD=16

FD for process 1

FD for Process 0

FD for process 2

FD for process 3

0 16 32 48

15 31 47 63

0(byte) 32(byte) 48(byte) 63(byte)
1 00 00

16(byte)

FD_begin

FD_end

Fig. 2.Assignment of file domain

Before performing the two mentioned phases, each process analyzes, which parts
of the file are stored locally by creating a list of offsets andlist of lengths. According
to the example, process 0 is assigned three intervals: (offset=0, length=4), (offset=20,
length=8), (offset=40, length=4). The list of offsets for this process is:{0, 20, 40} and
the list of lengths is:{4, 8, 4}.

In addition, each process calculates the first and last byte of the accessed intervl. In
our example, the first byte that process 0 has stored is 0 and the last byte is 43. Next,
all processes exchange these values and compute the maximumand minimum of file
access range, in this case 0 and 63, respectively. The interval is then divided in to equal-
sized FDs. If all 4 compute nodes are aggregators, it will be divided in 4 chunks of 16
bytes, one for each aggregator. Each chunk is assigned to each aggregator according
to its rank value. That is, block 0 is assigned to process withrank 0, block 1 to rank
1, etc. Each chunk (FD) is written to file by the assigned process. For performing this
operation, each process needs all the data of its FD. If thesedata are stored in other
processes, they are exchanged during the communication phase.

Once the size of each FD is obtained, two lists with so many positions as number of
processes are created. The first list indicates the beginning of the FD of each process.
The second one indicates the final of the FD of each process. Figure 2 shows how the
vector is divided into different FDs. Each FD has been assigned a different color. Also,
it can be observed that the assignment of FD is independent ofthe local data of each
process. This scheme is inefficient in many situations. For example, the FD for process
3, begins at byte 48 and finalizes at byte 63. All these data arestored in the process 2, so
this implies unnecessary communications between process 2and 3, because the process
2 has to send all this data to process 3, insted of writing it todisk.

Once each process knows all the referring data, it analyzes,which data from its
FD is not locally stored and what communication has be to be established in order to
gather the data. This stage is reflected in Figure 3. This figure shows the data of the P
vector that each process has locally stored. For any process, the vector elements labeled
’R’ are received and the ones labled ’S’ are sent. The arrows represent communication
operations.

For example, in Figure 3, process 0 needs three elements thatare stored in the
process 3, and has stored three elements that processes 1 and2 need. In the following
step ofTwo-Phase I/Otechnique, the processes exchange the previously calculated data.
Once all the processes have the data of their FD, they write tofile a chunk of consecutive
entries as shown in Figure 4. Each process transfers only onecontiguous region to
file (its FD), thus, reducing the number of I/O requests and improving the overall I/O
performance.

4 Locality aware strategy for Two-Phase I/O

As explained in Section 3,Two-Phase I/Omakes a fixed assignment of the FDs to
processes. With theLA-Two-Phase I/Oreplaces the rigid assignment of the FDs by
an assignment dependent of the initial distribution of the data over the processes. Our
approach is based on the Linear Assignment Problem.

4.1 Linear Assignment Problem

TheLinear Assignment Problem(LAP) is a well studied problem in linear programming
and combinatorial optimization. LAP computes the optimal assigment ofn items ton

elements given ann × n cost matrix. In other words, LAP selectsn elements of the
matrix (for instance, the matrix from Table 1), so that thereis exactly one element in
each row and one in each column, and the sum of the corresponding costs is maximum.

The problem of finding the best interval assignment to the existing processes can
be efficiently solved by applying the existing solutions of this problem. In our case, the
LAP tries to assign FDs to processes, by maximizing the cost,given that we want to
assign to the process the interval, for which it has more local data.

P0 in process 0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 1 R RR S 00 1S 22 22 221S 2’2

0 33 33 33 1 00 3300 R R R 2S 2S 2SR 2’S

0 R R R R 0S 330S 1 0S 11 22 22 2211 2’2

0 3S 3S 3S 1 00 3S00 1 00 11 R R R11 R

P0 in process 1

P0 in process 2

P0 in process 3

Recv process 0 = 3
Send process 0 = 3

Recv process 1 = 3
Send process 1 = 3

Recv process 2 = 4
Send process 2 = 4

Recv process 3 = 4
Send process 3 = 4

Fig. 3.Data transfers between processes

P0 in process 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 1 R RR 00 1 22 22 221 2’2

0 33 33 33 1 00 3300 2 2 2

R 0 330 1 0 11 22 22 2211 2’2

0 3 3 3 1 00 300 1 00 1111

P0 in process 1

P0 in process 2

P0 in process 3

0 33 33 331 22 R3 4

R RR R

5 R RRR RR 8R6 7

10 11 129

14 15 1613

Buffer I/O process 0

Buffer I/O process 1

Buffer I/O process 2

Buffer I/O process 3

0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’21 2 3 4 5 6 87 10 11 12 14 15 169 132
P in disk

Fig. 4.Write of data in disk.

A large number of algorithms, sequential and parallel, havebeen developed for
LAP. We have selected for our work the following algorithms,considered to be the
most representative ones:

– Hungarian algorithm[1]: This is the first polynomial-time primal-dual algorithm
that solves the assignment problem. The first version was invented and published
by Harold Kuhn in 1955 and has aO(n4) complexity. This was revised by James
Munkres in 1957, and has been known since as the Hungarian algorithm, the Munkres
assignment algorithm, or the Kuhn-Munkres algorithm.

– Jonker and Volgenant algorithm[5]: They develop a shortest augmenting path al-
gorithm for the linear assignment problem. It contains new initialization routines
and a special implementation of Dijkstra’s shortest path method. For both dense
and sparse problems computational experiments they show this algorithm to be
uniformly faster than the best algorithms from the literature. It has aO(n3) com-
plexity.

– APC and APS Algorithms[4]: These codes implement the LawlerO(n3)) version
of the Hungarian algorithm by Carpenato, Martello and Toth.APC works on a
complete cost matrix, while APS works on a sparse one.

4.2 LA-Two-Phase I/O

In order to explainLA-Two-Phase I/O, we use the example for Section 2 with the same
data and distribution as in Figure 1.

The proposed technique differs from the original version inthe assignment of the
FDs to processes. Each FD is assigned based on the distribution of the local data of
processes. In order to compute this initial distribution, the number of intervals in which
we can divide the file is computed. This is made by dividing thesize of the access
interval by the sizes of the FD. In our example, the number of intervals is equal to four.

The next step consists in assigning each interval to each process efficiently. First, a
matrix is constructed, with as many rows as processes, and somany columns as inter-
vals. Each matrix entry contains the number of elements thateach process has stored.
The matrix from our example is shown in Table 1.

P0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

Lenght_FD=16

FD for processor 0

FD for processor 3

FD for processor 1

FD for processor 2

16 32 48 0

31 47 63 15

0(byte) 16(byte) 32(byte) 48(byte) 63(byte)

FD_begin

FD_end

3 0 1 2Intervals

Fig. 5.Assignment of file domain for LA-Two-Phase I/O.

P0 in process 0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 S R RR 1 I R 11 22 22 221i1 2’2

0 33 33 33 1 00 3300 R R R 22 2i2 22R 22

S R R R R 0 R00 1 0S 11 22 22 2211 2’2

R 33 33 33 1 00 3iS00 1 00 11 R R R11 R

P0 in process 1

P0 in process 2

P0 in process 3

Recv process 0 = 2
Send process 0 = 2

Recv process 1 = 1
Send process 1 = 1

Recv process 2 = 0
Send process 2 = 0

Recv process 3 = 1
Send process 3 = 1

Fig. 6. Transfers of data between processes in LA-Two-Phase I/O.

Our technique is based on maximizing the aggregator locality by applying a LAP
algorithm and obtaining a list with the assignment of intervals to processes. For our
example, the assignment list is{3, 0, 1, 2} as indicated Figure 5. This list represents the
interval that has been assigned to each process.

This strategy reduces the number of communication operations, due to the fact that
each process increases the amount of locally assigned data.The following phases of
the LA-Two-Phase I/Oare the same as those of the original version. Figure 6 shows
the communication operations between processes. In the corresponding step of original
Two-phase I/O, shown in Figure 3, process 2 sends four elements and receives four
elements. With our technique, the number of transfers of process 2 has been reduced to
none (see Figure 6). In this example the LA-Two-Phase I/O reduces the overall transfers
from 28 exchanged elements to 8.

Interval/Process0 1 2 3

0 1 2 1 0
1 0 1 3 0
2 0 0 0 4
3 3 1 0 0

Table 1.Number of elements of each interval.

P0 in process 0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 1 R RR 00 1 22 22 221 2’2

0 33 33 33 1 00 3300 2 2 2

R 0 330 1 0 11 22 22 2211 2’2

0 3 3 3 1 00 300 1 00 1111

P0 in process 1

P0 in process 2

P0 in process 3

0 33 33 331 22 R3 4

R RR R

5 R RRR RR 8R6 7

10 11 129

14 15 1613

Buffer I/O process 0

Buffer I/O process 1

Buffer I/O process 2

Buffer I/O process 3

0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’21 2 3 4 5 6 87 10 11 12 14 15 169 132
P in disk

Fig. 7.Write of data in disk in LA-Two-Phase I/O.

Figure 7 shows the I/O phase ofLA-Two-Phase I/O. In the same way that as in the
original technique, each process writes to file a contiguousdata region.

5 Performance Evaluation

The evaluations in this paper were performed by using the BIPS3D application with
different input meshes related to different semiconductordevices. We have compared
LATP I/O with the original version of the techniqueTwo-Phase I/Oimplemented in
MPICH.

The tests have been made in Magerit cluster, installed in theCESVIMA supercom-
puting center. Magerit has 1200eServer BladeCenter JS202400 nodes, and each node
has two processors IBM 64 bits PowerPC single-core 970FX running at 2.2 GHz and
having 4GB RAM and 40GB HD. The interconnection network is Myrinet.

We have used the MPICHGM 2.7.15NOGM distribution for the basic implementa-
tion of Two-Phase I/O. We have developed our technique by modifying this code. The
parallel file system used is PVFS 1.6.3 with one metadata server and 8 I/O nodes with
a striping factor of 64KB.

The remainder of this section is divided as follows. Subsection 5.1 briefly overviews
the BIPS3D application. Subsection 5.2 contains the evaluation of the linear assignment
technique. Finally, the evaluation ofLA-Two-Phase I/Ois presented in subsection 5.3.

5.1 BIPS3D Simulator

BIPS3Dis a 3-dimensional simulator of BJT and HBT bipolar devices [8]. The goal of
the 3D simulation is to relate electrical characteristics of the device with its physical
and geometrical parameters. The basic equations to be solved are Poisson’s equation
and electron and hole continuity in a stationary state.

Finite element methods are applied in order to discretize the Poisson equation, hole
and electron continuity equations by using tetrahedral elements. The result is an un-
structured mesh. In this work, we have used four different meshes, as described later.

Mesh/Load mesh1 mesh2 mesh3 mesh4

100 18 12 28 110
200 36 25 56 221
500 90 63 140 552

Table 2.Size in MB of each file based on the mesh and loads.

Using the METIS library, this mesh is divided into sub-domains, in such a man-
ner that one sub-domain corresponds to one process. The nextstep is decoupling the
Poisson equation from the hole and electron continuity equations. They are linearized
by Newton method. Then we construct, for each sub-domain, ina parallel manner, the
part corresponding to the associated linear system. Each system is solved using domain
decomposition methods. Finally, the results are written toa file. For our evaluation
BIPS3D has been executed using four different meshes:mesh1 (47200 nodes),mesh2
(32888 nodes),mesh3 (732563 nodes) andmesh4 (289648 nodes), with different num-
ber of processes: 8, 16, 32 and 64. The BIPS3D associates a data stucture to each node
of a mesh. The contents of these data structures are the data written to disk during the
I/O phase. The number of elements that this structure has pereach mesh entry is given
by the load parameter. This means that, given a mesh and a load, the number of data
written is the product of the number of mesh elements and the load. In this work we
have evaluated different loads, concretely, 100, 200 and 500. Table 2 lists the different
sizes (in MB) of each file based on load and mesh characteristics.

5.2 Performance of the Linear Assignment Problem

We have applied all the LAP algorithms described in Section 4to our problem. We
have noticed that in all cases all algorithms produce the same assignment (of FDs to
processes). The only difference between them is the time to compute the optimal al-
location. Figure 8 shows the normalized execution time (taking the APC algorithm as
the reference technique) for solving the interval distribution using different number of
processes andmesh1 data distribution. Note that the fastest algorithm is the Jonker and
Volgenant, and for this reason we have chosen it to apply inLA-Two-Phase I/O.

5.3 Performance evaluation of LA-Two-Phase I/O

Figure 9 shows the percentage of reduction of communications for LA-Two-Phase I/O
overTwo-Phase I/Ofor mesh1, mesh2, mesh3 andmesh4 and different numbers of
processes. We can see that, when LATP is applied, the volume of transferred data is
considerably reduced.

In the first step of our study we have analyzed theTwo-Phase I/O, identifying the
stages of the technique that are more time-consuming. The stages ofTwo-Phase I/O
are:

– Offsets and lengths calculation (st1): In this stage the list of offsets and lengths of
the file is calculated.

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

1,3

1,5

4 8 16 32 64
Number of processes

E
x

e
c

u
ti

o
n

T
im

e
(n

o
rm

a
li

z
e

d
)

APC Hungarian APS Jonker

Fig. 8.Time for computing the optimal allocation formesh1.

– Offsets and lengths communication (st2): Each process communicates its start and
end offsets to the other processes. In this way all processeshave global information
about the involved file interval.

– Interval assignment (st3): This stage only exists inLA-Two-Phase I/O. First, it cal-
culates the number of intervals into which we can divide the file, and then, it assigns
intervals to processes by applyingLinear Assignment Problem(see Table 1).

– File domain calculation (st4): The I/O workload is divided among processes (see
Figure 2). This is done by dividing the file into file domains (FDs). In this way,
in the following stages, each aggregator collects and transfers to the file the data
associated to its FD.

– Access request calculation (st5): It calculates the access requests for the file do-
mains of remote processes.

– Metadata transfer (st6): Transfer the lists of offsets and lengths.
– Buffer writing (st7): The data are sent to appropriate processes (see Figure 3).
– File writing (st8): The data are written to file (see Figure 4).

0
5

10
15
20
25
30
35
40
45
50

Mesh1 Mesh2 Mesh3 Mesh4

P
e

rc
e

n
ta

g
e

o
f

im
p

ro
v

e
m

e
n

t
in

s
iz

e
o

f

tr
a

n
s

fe
re

d
d

a
ta

8 processes 16 processes

32 processes 64 processes

Fig. 9.Percentage reduction of transferred data volume formesh1, mesh2, mesh3 andmesh4.

st1-st5 st6 st7 st8

(a)

st1-st5 st6 st7 st8

(b)

Fig. 10. Stages of Two-Phase I/O formesh1: (a) with load 100 and 16 processes and (b) with
load 100 and 64 processes.

The buffer and file writing stages (st7 and st8), are repeatedas many times as the
following calculus indicates: the size of the file portion ofeach process is divided by
the size of theTwo-Phase I/Obuffer (4 MB in our experiments). First, the write size
of each process is obtained by dividing the size of the file by the number of processes.
For example, formesh4 with load 500 and using 8 processes the size of the file is 552
MB (see table 2). Therefore, the write size of each process is69 MB. Then, the file size
related to each process is divided to the buffer size ofTwo-Phase I/O. Consequently,
the number of times is given by this value divided by 4MB, for this example is 18.

Figure 10 represents the percentage of time ofTwo-Phase I/Ofor mesh1 with load
100, with 16 and 64 processes, respectively. The costs of stages st1, st2, st3, st4 and st5
have been added up, and we have represented this value in the figures as st1-st5.

As we can see in the Figures 10(a) and 10(b), the slowest stages are st6 and st7. Note
that the cost of the st6 stage increases with the number of processes. These figures show
the weight of the communication stages in theTwo-Phase I/Otechnique. Moreover, we
can see that the cost of these stages increases with the number of processors. Based on
this, we conclude that this represents an important bottleneck in this technique. For this
reason we have developed theLA-Two-Phase I/Otechnique with the aim of reducing
the amount of communication. This technique reduces the global time ofTwo-Phase
I/O.

LA-Two-Phase I/Otechnique improves the communication performance of st6 and
st7 stages. Figure 11(a) shows the percentage of improvement in st6 stage formesh1,
for different loads and different number of processes.

In this figure we can see that the time of st6 stage is significantly reduced in most
cases. In this stage each process calculates what requests of other processes lie in its file
domain and creates a list of offset and lengths for each process, which has data stored
in its FD. Besides, in this stage, each process sends the offset and length lists to the rest
of the processes. InLA-Two-Phase I/O, many of the data that each process has stored
belong to its FD (given that data locality is increased) and therefore less offsets and
lengths are communicated.

Figure 11(b) depicts the time of stage st7. Note that, again,this time is reduced
in most of cases. This is because in this stage, each process sends the data that has

-10

0

10

20

30

40

50

60

70

80

90

100

8 Processes 16 Processes 32 Processes 64 Processes

P
e

rc
e

n
ta

g
e

o
f

im
p

ro
v

e
m

e
n

t
in

S
ta

g
e

6 Load 100 Load 200 Load 500

(a)

-5

0

5

10

15

20

25

30

35

40

45

8 Processes 16 Processes 32 Processes 64 Processes

P
e

rc
e

n
ta

g
e

o
f

im
p

ro
v

e
m

e
n

t
in

S
ta

g
e

7

Load 100 Load 200 Load 500

(b)

Fig. 11.Percentage of improvement formesh1: (a) in Stage 6 and (b) in Stage 7.

calculated in st6 stage to the appropriate processes. InLA-Two-Phase I/O, many of the
data that each process has stored belong to its FD, therefore, they send less data to the
other processes, reducing the number of transfers and the volume of data.

Figure 12 shows the overall percentage of improvement of ourtechnique formesh1,
mesh2, mesh3 andmesh4 with 64 processes. In this figure, we included the time of all
stages. For this reason the percentage of improvement is smaller than in previous stages.

0

5

10

15

20

25

30

35

8 Processes 16 Processes 32 Processes 64 Processes

O
v

e
ra

ll
p

e
rc

e
n

ta
g

e
o

f
im

p
ro

v
e

m
e

n
t

Load 100 Load 200 Load 500

(a)

-10

-5

0

5

10

15

20

25

30

35

8 Processes 16 Processes 32 Processes 64 Processes

O
v

e
ra

ll
p

e
rc

e
n

ta
g

e
o

f
im

p
ro

v
e

m
e

n
t

Load 100 Load 200 Load 500

(b)

0

5

10

15

20

25

30

35

40

45

8 Processes 16 Processes 32 Processes 64 Processes

O
v

e
ra

ll
p

e
rc

e
n

ta
g

e
o

f
im

p
ro

v
e

m
e

n
t

Load 100 Load 200 Load 500

(c)

-5

0

5

10

15

20

8 Processes 16 Processes 32 Processes 64 Processes

O
v

e
ra

ll
p

e
rc

e
n

ta
g

e
o

f
im

p
ro

v
e

m
e

n
t

Load 100 Load 200 Load 500

(d)

Fig. 12.Overall improvement for: (a)mesh1 (b) mesh2 (c) mesh3 and (d)mesh4.

Nevertheless, we can notice that in the majority cases a significant improvement in
the execution time forLA-Two-Phase I/Otechnique. The original technique performed
better in 4 of the 48 cases, but the loss was under 5% in all the cases. It appears that,
for these cases (which represent less than 10% of the total),the data locality happened
to be good enough in the original distribution and the additional cost to find a better
distribution did not pay off.

It is important to emphasize that the additional cost of the new stage (st3) is very
small compared with the total time. The fraction of this stage in the overall execution
time is small: in the best case it is 0.07% of the time (mesh2, 8 processes and load 500)
and in the worst case the 7% (mesh3, 64 processes and load 100).

6 Conclusions

In this paper a new technique calledLA-Two-Phase I/Obased on the local data that
each process stores is presented. First of all, we have showed that theLA-Two-Phase
I/O improves the overall performance, when compared to the original Two-Phase I/O.
The new stage (st3), which we have added to the techniqueLA-Two-Phase I/Ohas an
insignificant overhead in comparison to the total executiontime.

In the evaluation section we have shown that the greater number of processes, the
larger the improvement brought by our technique. Finally, it is important to emphasize,
thatLA-Two-Phase I/Ocan be applied to every kind of data distribution.

Acknowledgements

This work has been partially funded by project TIN2007-63092 of Spanish Ministry of
Education and project CCG07-UC3M/TIC-3277 of Madrid StateGovernement.

References

1. S. S. Blackman. Multiple-Target Tracking with Radar Applications. InDedham,MA: Artech
House, 1986.

2. R. Bordawekar. Implementation of Collective I/O in the Intel Paragon Parallel File System:
Initial Experiences. InProc. 11th International Conference on Supercomputing, July 1997.
To appear.

3. J. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel I/O via a two-phase
run-time access strategy. InProc. of IPPS Workshop on Input/Output in Parallel Computer
Systems, 1993.

4. S. M. Giorgio Carpaneto and P. Toth. Algorithms and codes for the assignment problem.
Annals of Operations Research, 13(1):191–223, 1988.

5. R. Jonker and A. Volgenant. A Shortest Augmenting Path Algorithm forDense and Sparse
Linear Assignment Problems.Computing, 38(4):325–340, 1987.

6. G. Karypis and V. Kumar. METIS — A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Tech-
nical report, Department of Computer Science/Army HPC Research Center, University of
Minnesota, Minneapolis, 1998.

7. D. Kotz. Disk-directed I/O for MIMD Multiprocesses. InProc. of the First USENIX Symp.
on Operating Systems Design and Implementation, 1994.

8. A. Loureiro, J. Gonźalez, and T.F.Pena. A parallel 3d semiconductor device simulator for
gradual heterojunction bipolar transistors.Journal of Numerical Modelling: electronic net-
works, devices and fields, 16:53–66, 2003.

9. K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O
in Panda. InProceedings of Supercomputing ’95.

10. R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Collective I/O inROMIO. In Proc.
of the 7th Symposium on the Frontiers of Massively Parallel Computation, pages 182–189,
February 1999.

11. W. Ligon and R. Ross. An Overview of the Parallel Virtual File System.In Proceedings of
the Extreme Linux Workshop, June 1999.

12. C. F. S. Inc. Lustre: A scalable, high-performance file system. Cluster File Systems Inc.
white paper, version 1.0, November 2002. http://www.lustre.org/docs/whitepaper.pdf.

13. Indiana University, http://www.lam-mpi.org/.LAM website.
14. F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and W. Tichy. Integrating Collective I/O and

Cooperative Caching into the “Clusterfile” Parallel File System. InProceedings of ACM
International Conference on Supercomputing (ICS), pages 315–324. ACM Press, 2004.

15. F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for Large Computing Clus-
ters. InProceedings of FAST, 2002.

16. R. Thakur, W. Gropp, and E. Lusk. Optimizing Noncontiguous Accesses in MPI-IO.Parallel
Computing, 28(1):83–105, Jan. 2002.

17. W. keng Liao, K. Coloma, A. Choudhary, L. Ward, E. Russel, andS. Tideman. Collective
Caching: Application-Aware Client-Side File Caching. InProceedings of the 14th Interna-
tional Symposium on High Performance Distributed Computing (HPDC), July 2005.

18. W. keng Liao, K. Coloma, A. N. Choudhary, and L. Ward. Cooperative Write-Behind Data
Buffering for MPI I/O InPVM/MPI, pages 102–109, 2005.

19. N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File Access Characteristics
of Parallel Scientific Workloads. InIEEE Transactions on Parallel and Distributed Systems,
7(10), Oct. 1996.

20. H. Simitici and D. Reed. A Comparison of Logical and Physical Parallel I/O Patterns. In
International Journal of High Performance Computing Applications, special issue (I/O in
Parallel Applications), 12(3), 1998.

21. K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O
in Panda. InProceedings of Supercomputing ’95.

22. W. Yu and J. Vetter and R. S. Canon and S. Jiang. Exploiting Lustre FileJoining for Effective
Collective I/O. InCCGRID ’07: Proceedings of the Seventh IEEE International Symposium
on Cluster Computing and the Grid, pages 267–274, Washington, DC, USA, 2007. IEEE
Computer Society.

