Skip to main content

Data Locality Aware Strategy for Two-Phase Collective I/O

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2008 (VECPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5336))

  • 1185 Accesses

Abstract

This paper presents Locality-Aware Two-Phase (LATP) I/O, an optimization of the Two-Phase collective I/O technique from ROMIO, the most popular MPI-IO implementation. In order to increase the locality of the file accesses, LATP employs the Linear Assignment Problem (LAP) for finding an optimal distribution of data to processes, an aspect that is not considered in the original technique. This assignment is based on the local data that each process stores and has as main purpose the reduction of the number of communication involved in the I/O collective operation and, therefore, the improvement of the global execution time. Compared with Two-Phase I/O, LATP I/O obtains important improvements in most of the considered scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blackman, S.S.: Multiple-Target Tracking with Radar Applications. Artech House, Dedham (1986)

    Google Scholar 

  2. Bordawekar, R.: Implementation of Collective I/O in the Intel Paragon Parallel File System: Initial Experiences. In: Proc. 11th International Conference on Supercomputing (July 1997) (to appear)

    Google Scholar 

  3. del Rosario, J., Bordawekar, R., Choudhary, A.: Improved parallel I/O via a two-phase run-time access strategy. In: Proc. of IPPS Workshop on Input/Output in Parallel Computer Systems (1993)

    Google Scholar 

  4. Giorgio Carpaneto, S.M., Toth, P.: Algorithms and codes for the assignment problem. Annals of Operations Research 13(1), 191–223 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jonker, R., Volgenant, A.: A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems. Computing 38(4), 325–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Karypis, G., Kumar, V.: METIS — A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, Department of Computer Science/Army HPC Research Center, University of Minnesota, Minneapolis (1998)

    Google Scholar 

  7. Kotz, D.: Disk-directed I/O for MIMD Multiprocesses. In: Proc. of the First USENIX Symp. on Operating Systems Design and Implementation (1994)

    Google Scholar 

  8. Loureiro, A., González, J., Pena, T.F.: A parallel 3d semiconductor device simulator for gradual heterojunction bipolar transistors. Journal of Numerical Modelling: electronic networks, devices and fields 16, 53–66 (2003)

    Article  MATH  Google Scholar 

  9. Seamons, K., Chen, Y., Jones, P., Jozwiak, J., Winslett, M.: Server-directed collective I/O in Panda. In: Proceedings of Supercomputing 1995 (1995)

    Google Scholar 

  10. Thakur, R., Gropp, W., Lusk, E.: Data Sieving and Collective I/O in ROMIO. In: Proc. of the 7th Symposium on the Frontiers of Massively Parallel Computation, pp. 182–189 (February 1999)

    Google Scholar 

  11. Ligon, W., Ross, R.: An Overview of the Parallel Virtual File System. In: Proceedings of the Extreme Linux Workshop (June 1999)

    Google Scholar 

  12. C.F.S. Inc. Lustre: A scalable, high-performance file system. Cluster File Systems Inc. white paper, version 1.0 (November 2002), http://www.lustre.org/docs/whitepaper.pdf

  13. Indiana University, LAM website, http://www.lam-mpi.org/

  14. Isaila, F., Malpohl, G., Olaru, V., Szeder, G., Tichy, W.: Integrating Collective I/O and Cooperative Caching into the “Clusterfile” Parallel File System. In: Proceedings of ACM International Conference on Supercomputing (ICS), pp. 315–324. ACM Press, New York (2004)

    Google Scholar 

  15. Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File System for Large Computing Clusters. In: Proceedings of FAST (2002)

    Google Scholar 

  16. Thakur, R., Gropp, W., Lusk, E.: Optimizing Noncontiguous Accesses in MPI-IO. Parallel Computing 28(1), 83–105 (2002)

    Article  MATH  Google Scholar 

  17. Liao, W.K., Coloma, K., Choudhary, A., Ward, L., Russel, E., Tideman, S.: Collective Caching: Application-Aware Client-Side File Caching. In: Proceedings of the 14th International Symposium on High Performance Distributed Computing (HPDC) (July 2005)

    Google Scholar 

  18. Keng Liao, W., Coloma, K., Choudhary, A.N., Ward, L.: Cooperative Write-Behind Data Buffering for MPI I/O. In: PVM/MPI, pp. 102–109 (2005)

    Google Scholar 

  19. Nieuwejaar, N., Kotz, D., Purakayastha, A., Ellis, C., Best, M.: File Access Characteristics of Parallel Scientific Workloads. IEEE Transactions on Parallel and Distributed Systems 7(10) (October 1996)

    Google Scholar 

  20. Simitici, H., Reed, D.: A Comparison of Logical and Physical Parallel I/O Patterns. In: International Journal of High Performance Computing Applications, special issue (I/O in Parallel Applications), vol. 12(3) (1998)

    Google Scholar 

  21. Seamons, K., Chen, Y., Jones, P., Jozwiak, J., Winslett, M.: Server-directed collective I/O in Panda. In: Proceedings of Supercomputing 1995 (1995)

    Google Scholar 

  22. Yu, W., Vetter, J., Canon, R.S., Jiang, S.: Exploiting Lustre File Joining for Effective Collective I/O. In: CCGRID 2007: Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, Washington, DC, USA, pp. 267–274. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filgueira, R., Singh, D.E., Pichel, J.C., Isaila, F., Carretero, J. (2008). Data Locality Aware Strategy for Two-Phase Collective I/O. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92859-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92858-4

  • Online ISBN: 978-3-540-92859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics