Abstract
This paper presents Locality-Aware Two-Phase (LATP) I/O, an optimization of the Two-Phase collective I/O technique from ROMIO, the most popular MPI-IO implementation. In order to increase the locality of the file accesses, LATP employs the Linear Assignment Problem (LAP) for finding an optimal distribution of data to processes, an aspect that is not considered in the original technique. This assignment is based on the local data that each process stores and has as main purpose the reduction of the number of communication involved in the I/O collective operation and, therefore, the improvement of the global execution time. Compared with Two-Phase I/O, LATP I/O obtains important improvements in most of the considered scenarios.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blackman, S.S.: Multiple-Target Tracking with Radar Applications. Artech House, Dedham (1986)
Bordawekar, R.: Implementation of Collective I/O in the Intel Paragon Parallel File System: Initial Experiences. In: Proc. 11th International Conference on Supercomputing (July 1997) (to appear)
del Rosario, J., Bordawekar, R., Choudhary, A.: Improved parallel I/O via a two-phase run-time access strategy. In: Proc. of IPPS Workshop on Input/Output in Parallel Computer Systems (1993)
Giorgio Carpaneto, S.M., Toth, P.: Algorithms and codes for the assignment problem. Annals of Operations Research 13(1), 191–223 (1988)
Jonker, R., Volgenant, A.: A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems. Computing 38(4), 325–340 (1987)
Karypis, G., Kumar, V.: METIS — A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, Department of Computer Science/Army HPC Research Center, University of Minnesota, Minneapolis (1998)
Kotz, D.: Disk-directed I/O for MIMD Multiprocesses. In: Proc. of the First USENIX Symp. on Operating Systems Design and Implementation (1994)
Loureiro, A., González, J., Pena, T.F.: A parallel 3d semiconductor device simulator for gradual heterojunction bipolar transistors. Journal of Numerical Modelling: electronic networks, devices and fields 16, 53–66 (2003)
Seamons, K., Chen, Y., Jones, P., Jozwiak, J., Winslett, M.: Server-directed collective I/O in Panda. In: Proceedings of Supercomputing 1995 (1995)
Thakur, R., Gropp, W., Lusk, E.: Data Sieving and Collective I/O in ROMIO. In: Proc. of the 7th Symposium on the Frontiers of Massively Parallel Computation, pp. 182–189 (February 1999)
Ligon, W., Ross, R.: An Overview of the Parallel Virtual File System. In: Proceedings of the Extreme Linux Workshop (June 1999)
C.F.S. Inc. Lustre: A scalable, high-performance file system. Cluster File Systems Inc. white paper, version 1.0 (November 2002), http://www.lustre.org/docs/whitepaper.pdf
Indiana University, LAM website, http://www.lam-mpi.org/
Isaila, F., Malpohl, G., Olaru, V., Szeder, G., Tichy, W.: Integrating Collective I/O and Cooperative Caching into the “Clusterfile” Parallel File System. In: Proceedings of ACM International Conference on Supercomputing (ICS), pp. 315–324. ACM Press, New York (2004)
Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File System for Large Computing Clusters. In: Proceedings of FAST (2002)
Thakur, R., Gropp, W., Lusk, E.: Optimizing Noncontiguous Accesses in MPI-IO. Parallel Computing 28(1), 83–105 (2002)
Liao, W.K., Coloma, K., Choudhary, A., Ward, L., Russel, E., Tideman, S.: Collective Caching: Application-Aware Client-Side File Caching. In: Proceedings of the 14th International Symposium on High Performance Distributed Computing (HPDC) (July 2005)
Keng Liao, W., Coloma, K., Choudhary, A.N., Ward, L.: Cooperative Write-Behind Data Buffering for MPI I/O. In: PVM/MPI, pp. 102–109 (2005)
Nieuwejaar, N., Kotz, D., Purakayastha, A., Ellis, C., Best, M.: File Access Characteristics of Parallel Scientific Workloads. IEEE Transactions on Parallel and Distributed Systems 7(10) (October 1996)
Simitici, H., Reed, D.: A Comparison of Logical and Physical Parallel I/O Patterns. In: International Journal of High Performance Computing Applications, special issue (I/O in Parallel Applications), vol. 12(3) (1998)
Seamons, K., Chen, Y., Jones, P., Jozwiak, J., Winslett, M.: Server-directed collective I/O in Panda. In: Proceedings of Supercomputing 1995 (1995)
Yu, W., Vetter, J., Canon, R.S., Jiang, S.: Exploiting Lustre File Joining for Effective Collective I/O. In: CCGRID 2007: Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, Washington, DC, USA, pp. 267–274. IEEE Computer Society, Los Alamitos (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Filgueira, R., Singh, D.E., Pichel, J.C., Isaila, F., Carretero, J. (2008). Data Locality Aware Strategy for Two-Phase Collective I/O. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-92859-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92858-4
Online ISBN: 978-3-540-92859-1
eBook Packages: Computer ScienceComputer Science (R0)