Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5336))

  • 1215 Accesses

Abstract

Sphere-Decoding (SD) methods are branch-and-bound-like techniques used for optimal detection of digital communications signals over in wireless MIMO (Multiple input Multiple Output) channels. These methods look for the optimal solution in a tree of partial solutions; the size of the tree depends on the parameters of the problem (dimension of the channel matrix, cardinality of the alphabet), and such search can be much more expensive depending on these parameters. This search often has to be carried out in real time. This paper presents parallel versions of the Sphere-Decoding method for different parallel architectures with the goal of reducing the computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Transactions on Information Theory 48, 2201–2214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chandra, R., Dagun, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  3. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation 44(170), 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Foschini, G.J.: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal 1, 41–59 (1996)

    Article  Google Scholar 

  5. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Addison-Wesley, Reading (2003)

    MATH  Google Scholar 

  6. Hammarling, S., Dongarra, J., Du Croz, J., Hanson, R.J.: An extended set of fortran basic linear algebra subroutines. ACM Trans. Mat. Software (1988)

    Google Scholar 

  7. Hassibi, B., Vikalo, H.: On sphere decoding algorithm. i. expected complexity. IEEE Transactions on Signal Processing 53, 2806–2818 (2005)

    Article  MathSciNet  Google Scholar 

  8. Kannan, R.: Improved algorithms for integer programming and related lattice problems. ACM Symp. Theory of Computing (1983)

    Google Scholar 

  9. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Programming 66, 181–191 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Reference. MIT Press, Cambridge (1996)

    Google Scholar 

  11. Telater, I.E.: Capacity of multi-antenna gaussian channels. Europ. Trans. Telecommun., 585–595 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trujillo, R.A., Vidal, A.M., García, V.M., González, A. (2008). Parallelization of Sphere-Decoding Methods. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92859-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92858-4

  • Online ISBN: 978-3-540-92859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics