Skip to main content

Parallel Eigensolvers for a Discretized Radiative Transfer Problem

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2008 (VECPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5336))

Abstract

In this work we consider the numerical computation of eigenpairs of a matrix derived from integral operators. The matrix is associated to a radiative transfer problem in stellar atmospheres that is formulated by means of a weakly singular Fredholm integral equation defined on a Banach space. We examine direct and iterative parallel strategies for the eigensolution phase, using state-of-the-art numerical methods implemented in publicly available software packages.

This work was partially supported by the Portuguese and Spanish governments via an Integrated Action (resp. ref. E-41/07 and ref. HP2006-0004), and partly by the Director, Office of Science, Advanced Scientific Computing Research Program, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Drummond, L.A., Marques, O.A.: An overview of the advanced computational software (ACTS) collection. ACM Transactions on Mathematical Software 31(3), 282–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahues, M., d’Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.: An L 1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. Journal of Computational and Applied Mathematics 140, 13–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rutily, B.: Multiple scattering theoretical and integral equations. In: Cotanda, C., Ahues, M., Largillier, A. (eds.) Integral Methods in Science and Engineering: Analytic and Numerical Techniques, pp. 211–231. Birkhauser, Basel (2004)

    Chapter  Google Scholar 

  4. Marques, O.A., Vasconcelos, P.B.: Evaluation of linear solvers for astrophysics transfer problems. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 466–475. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1964); Reprinted by Dover, New York

    MATH  Google Scholar 

  6. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  7. Dhillon, I.S.: A New O(N2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem PhD. Thesis, University of California, Berkeley (1997)

    Google Scholar 

  8. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 2.3.3, Argonne National Laboratory (2007)

    Google Scholar 

  9. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Computer Methods in Applied Mechanics and Engineering 184(2–4), 501–520 (2000)

    Article  MATH  Google Scholar 

  10. Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Applied Numerical Mathematics: Transactions of IMACS 41(1), 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software 31(3), 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: SLEPc users manual. Technical Report DSIC-II/24/02 - Revision 2.3.3, D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2007)

    Google Scholar 

  13. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    MATH  Google Scholar 

  14. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM Journal on Matrix Analysis and Applications 23(3), 601–614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stathopoulos, A.: Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: Seeking one eigenvalue. SIAM Journal on Scientific Computing 29(2), 481–514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vasconcelos, P.B., Marques, O., Roman, J.E. (2008). Parallel Eigensolvers for a Discretized Radiative Transfer Problem. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92859-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92858-4

  • Online ISBN: 978-3-540-92859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics