Abstract
We present Vortex Methods implemented in massively parallel computer architectures for the Direct Numerical Simulations of high Reynolds numbers flows. Periodic and non-periodic domains are considered leading to unprecedented simulations using billions of particles. We discuss the implementation performance of the method up to 16k IBM BG/L nodes and the evolutionary optimization of long wavelength instabilities in aircraft wakes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Winckelmans, G.: Vortex methods. In: Stein, E., De Borst, R., Hughes, T.J. (eds.) Encyclopedia of Computational Mechanics, vol. 3. John Wiley and Sons, Chichester (2004)
Koumoutsakos, P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457–487 (2005)
Crouch, J.D.: Instability and transient growth for two trailing-vortex pairs. Journal of Fluid Mechanics 350, 311–330 (1997)
Crouch, J.D., Miller, G.D., Spalart, P.R.: Active-control system for breakup of airplane trailing vortices. AIAA Journal 39(12), 2374–2381 (2001)
Durston, D.A., Walker, S.M., Driver, D.M., Smith, S.C., Savas, Ö.: Wake vortex alleviation flow field studies. J. Aircraft 42(4), 894–907 (2005)
Graham, W.R., Park, S.W., Nickels, T.B.: Trailing vortices from a wing with a notched lift distribution. AIAA Journal 41(9), 1835–1838 (2003)
Ortega, J.M., Savas, Ö.: Rapidly growing instability mode in trailing multiple-vortex wakes. AIAA Journal 39(4), 750–754 (2001)
Stumpf, E.: Study of four-vortex aircraft wakes and layout of corresponding aircraft configurations. J. Aircraft 42(3), 722–730 (2005)
Winckelmans, G., Cocle, R., Dufresne, L., Capart, R.: Vortex methods and their application to trailing wake vortex simulations. C. R. Phys. 6(4-5), 467–486 (2005)
Cocle, R., Dufresne, L., Winckelmans, G.: Investigation of multiscale subgrid models for les of instabilities and turbulence in wake vortex systems. Lecture Notes in Computational Science and Engineering 56 (2007)
Beale, J.T., Majda, A.: Vortex methods I: convergence in 3 dimensions. Mathematics of Computation 39(159), 1–27 (1982)
Beale, J.T.: On the accuracy of vortex methods at large times. In: Proc. Workshop on Comput. Fluid Dyn. and React. Gas Flows, IMA, Univ. of Minnesota, 1986, p. 19. Springer, New York (1988)
Cottet, G.H.: Artificial viscosity models for vortex and particle methods. J. Comput. Phys. 127(2), 299–308 (1996)
Koumoutsakos, P.: Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138(2), 821–857 (1997)
Chaniotis, A., Poulikakos, D., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J. Comput. Phys. 182, 67–90 (2002)
Eldredge, J.D., Colonius, T., Leonard, A.: A vortex particle method for two dimensional compressible flow. J. Comput. Phys. 179, 371–399 (2002)
Monaghan, J.J.: Extrapolating b splines for interpolation. J. Comput. Phys. 60(2), 253–262 (1985)
Sbalzarini, I.F., Walther, J.H., Bergdorf, M., Hieber, S.E., Kotsalis, E.M., Koumoutsakos, P.: PPM a highly efficient parallel particle mesh library for the simulation of continuum systems. J. Comput. Phys. 215, 566–588 (2006)
Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Seattle, WA, vol. 3, pp. 1381–1384 (1998)
Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA Journal 8(12), 2172–2179 (1970)
Stuff, R.: The near-far relationship of vortices shed from transport aircraft. In: AIAA (ed.) AIAA Applied Aerodynamics Conference, 19th, Anaheim, CA, AIAA, pp. 2001–2429. AIAA, Anaheim (2001)
Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dynamics Research 10(4-6), 199–228 (1992)
Bergdorf, M., Koumoutsakos, P., Leonard, A.: Direct numerical simulations of vortex rings at re γ = 7500. J. Fluid. Mech. 581, 495–505 (2007)
Hockney, R., Eastwood, J.: Computer Simulation using Particles. Institute of Physics Publishing (1988)
Chatelain, P., Koumoutsakos, P.: Fast unbounded domain vortex methods using fourier solvers (in preparation, 2008)
Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)
Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P.: Billion vortex particle direct numerical simulations of aircraft wakes. Computer Methods in Applied Mechanics and Engineering 197(13), 1296–1304 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P. (2008). Vortex Methods for Massively Parallel Computer Architectures. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-540-92859-1_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92858-4
Online ISBN: 978-3-540-92859-1
eBook Packages: Computer ScienceComputer Science (R0)