Skip to main content

Vortex Methods for Massively Parallel Computer Architectures

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2008 (VECPAR 2008)

Abstract

We present Vortex Methods implemented in massively parallel computer architectures for the Direct Numerical Simulations of high Reynolds numbers flows. Periodic and non-periodic domains are considered leading to unprecedented simulations using billions of particles. We discuss the implementation performance of the method up to 16k IBM BG/L nodes and the evolutionary optimization of long wavelength instabilities in aircraft wakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Winckelmans, G.: Vortex methods. In: Stein, E., De Borst, R., Hughes, T.J. (eds.) Encyclopedia of Computational Mechanics, vol. 3. John Wiley and Sons, Chichester (2004)

    Google Scholar 

  2. Koumoutsakos, P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457–487 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crouch, J.D.: Instability and transient growth for two trailing-vortex pairs. Journal of Fluid Mechanics 350, 311–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crouch, J.D., Miller, G.D., Spalart, P.R.: Active-control system for breakup of airplane trailing vortices. AIAA Journal 39(12), 2374–2381 (2001)

    Article  Google Scholar 

  5. Durston, D.A., Walker, S.M., Driver, D.M., Smith, S.C., Savas, Ö.: Wake vortex alleviation flow field studies. J. Aircraft 42(4), 894–907 (2005)

    Article  Google Scholar 

  6. Graham, W.R., Park, S.W., Nickels, T.B.: Trailing vortices from a wing with a notched lift distribution. AIAA Journal 41(9), 1835–1838 (2003)

    Article  Google Scholar 

  7. Ortega, J.M., Savas, Ö.: Rapidly growing instability mode in trailing multiple-vortex wakes. AIAA Journal 39(4), 750–754 (2001)

    Article  Google Scholar 

  8. Stumpf, E.: Study of four-vortex aircraft wakes and layout of corresponding aircraft configurations. J. Aircraft 42(3), 722–730 (2005)

    Article  Google Scholar 

  9. Winckelmans, G., Cocle, R., Dufresne, L., Capart, R.: Vortex methods and their application to trailing wake vortex simulations. C. R. Phys. 6(4-5), 467–486 (2005)

    Article  Google Scholar 

  10. Cocle, R., Dufresne, L., Winckelmans, G.: Investigation of multiscale subgrid models for les of instabilities and turbulence in wake vortex systems. Lecture Notes in Computational Science and Engineering 56 (2007)

    Google Scholar 

  11. Beale, J.T., Majda, A.: Vortex methods I: convergence in 3 dimensions. Mathematics of Computation 39(159), 1–27 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Beale, J.T.: On the accuracy of vortex methods at large times. In: Proc. Workshop on Comput. Fluid Dyn. and React. Gas Flows, IMA, Univ. of Minnesota, 1986, p. 19. Springer, New York (1988)

    Chapter  Google Scholar 

  13. Cottet, G.H.: Artificial viscosity models for vortex and particle methods. J. Comput. Phys. 127(2), 299–308 (1996)

    Article  MATH  Google Scholar 

  14. Koumoutsakos, P.: Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138(2), 821–857 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chaniotis, A., Poulikakos, D., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J. Comput. Phys. 182, 67–90 (2002)

    Article  MATH  Google Scholar 

  16. Eldredge, J.D., Colonius, T., Leonard, A.: A vortex particle method for two dimensional compressible flow. J. Comput. Phys. 179, 371–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monaghan, J.J.: Extrapolating b splines for interpolation. J. Comput. Phys. 60(2), 253–262 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sbalzarini, I.F., Walther, J.H., Bergdorf, M., Hieber, S.E., Kotsalis, E.M., Koumoutsakos, P.: PPM a highly efficient parallel particle mesh library for the simulation of continuum systems. J. Comput. Phys. 215, 566–588 (2006)

    Article  MATH  Google Scholar 

  19. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Seattle, WA, vol. 3, pp. 1381–1384 (1998)

    Google Scholar 

  20. Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA Journal 8(12), 2172–2179 (1970)

    Article  Google Scholar 

  21. Stuff, R.: The near-far relationship of vortices shed from transport aircraft. In: AIAA (ed.) AIAA Applied Aerodynamics Conference, 19th, Anaheim, CA, AIAA, pp. 2001–2429. AIAA, Anaheim (2001)

    Google Scholar 

  22. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dynamics Research 10(4-6), 199–228 (1992)

    Article  Google Scholar 

  23. Bergdorf, M., Koumoutsakos, P., Leonard, A.: Direct numerical simulations of vortex rings at re γ = 7500. J. Fluid. Mech. 581, 495–505 (2007)

    Article  MATH  Google Scholar 

  24. Hockney, R., Eastwood, J.: Computer Simulation using Particles. Institute of Physics Publishing (1988)

    Google Scholar 

  25. Chatelain, P., Koumoutsakos, P.: Fast unbounded domain vortex methods using fourier solvers (in preparation, 2008)

    Google Scholar 

  26. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  27. Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P.: Billion vortex particle direct numerical simulations of aircraft wakes. Computer Methods in Applied Mechanics and Engineering 197(13), 1296–1304 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P. (2008). Vortex Methods for Massively Parallel Computer Architectures. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92859-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92858-4

  • Online ISBN: 978-3-540-92859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics