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Abstract. Storage is undoubtedly one of the main resources in data grids, and 
planning the capacity of storage nodes is an important step in any data-grid 
design. This paper focuses on storage-capacity planning for data grids. We have 
developed a tool to calculate, for a specific scenario, the minimum capacity 
required for each storage node in a grid, and we have used this tool to show that 
different strategies used for data replication may lead to different storage 
requirements, affecting the storage-capacity planning.  
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1   Introduction 

Grid computing addresses the challenge of coordinating resource sharing and problem 
solving in dynamic, multi-institutional virtual organizations [3]. Though we often 
think of processor power as a primary motivation for grid computing, access to 
distributed data is typically as important as access to distributed computational 
resources. In fields such as high-energy physics, biology and medical image 
processing, and earth observations, experiments can produce massive amounts of 
data, on the scale of petabytes per year [4]. The global sharing of such large amounts 
of data introduces access, processing, and distribution difficulties. With the massive 
size of the data, the task of managing and distributing the data quickly becomes a 
problem. Data grids have been developed to facilitate the efficient storage and quick 
distribution of this data [11].  

A data grid connects a collection of geographically distributed computer and 
storage resources, enabling users to share data and other resources in a seamless 
fashion. The European Data Grid project is an effort to achieve the vision of uniform 
and transparent access to data and computing resources [10]. The vision is a 
computing environment in which a scientist who wants to run a computationally 
intensive process on a huge data set has several options. If there are sufficient 
computing resources on the local network, the scientist should be able to download 



 

the data to a local destination and perform the job locally. If the local site lacks the 
necessary computing resources, the scientist could chose to off-load the processing to 
the data site. However, if the data site is under heavy load, the scientist could also 
request that the data be replicated to another site, and run the job on that site. 

The design of a data grid requires forethought concerning the capacity of 
resources in order to avoid over-provisioning and/or under-provisioning at different 
locations of the grid. Capacity planning is defined as the process of assessing the 
cost/benefit of a system configuration before actually building it [1, 5, 6]. A useful 
prediction necessarily considers the evolution of the workload on the data grid. With 
capacity planning, system administrators can input different network topologies, 
while varying different resource allocations and other parameters (such as network 
link capacities, node storage capacities, and data replication strategies) in order to 
fine-tune the data grid's resource utilization. 

Since one of the main resources in data grids is storage, planning the capacity of 
storage nodes is a key part of a data-grid design. This paper focuses on storage-
capacity planning for data grids. We have developed a tool to calculate, for a specific 
scenario, the minimum capacity required for each storage node in a grid. The 
scenarios are defined by the network topology and the workload characteristics. The 
tool combines the topology with the load characteristics to produce guidelines on the 
minimum storage capacity required in each storage node to provide enough space to 
the workload considered. We have used this tool to compare data-replication 
strategies and show that they affect the storage required. 

This paper is organized as follows. Section 2 discusses data replication. Section 3 
presents a strategy for calculating storage capacity taking into account data 
replication. Section 4 shows how data replication affects the need for storage in data 
grids. Section 5 concludes. 

2   Data Replication 

Data replication is a technique used in grid computing to both decrease access time to 
data and increase fault tolerance. Replication is especially important when 
considering requests for transferring massive amounts of data between geographically 
distant locations, which consume large amounts of bandwidth and are delayed by 
possibly high latencies [8, 9].  

With the goal of reducing access latency and bandwidth consumption, recent 
research have addressed the usefulness of creating replicas to distribute data among 
scientists within a grid environment. Data replication can be managed statically or 
dynamically. Though static replication plans do improve load balancing and 
reliability, it does not adapt to changes in load behavior. Since data grids are intended 
for a global computing environment, where variable data-access patterns are 
expected, dynamic replication is preferred. In dynamic replication, the replication 
strategies adapt to changes in user behavior, making heavy use of locality in 
determining where files should be replicated. Decisions are made based on the notion 
that recently accessed files are more likely to be accessed again (temporal locality), 
files recently accessed by a node are likely to be accessed by nearby nodes 



 

(geographical locality), and files near recently accessed files are likely to be accessed 
(spatial locality). 

In [8], the authors discussed and evaluated six replication/caching strategies:  
• No replication or caching. 
• Best client: Nodes maintain an access history for each file, and when a threshold 

number of accesses is reached, review the history to determine the replica 
destination. 

• Cascading replication: Take advantage of the hierarchical layout of a grid by 
replicating the requested file along the path from server to requester. A replica is 
made to the next node on the path to the requester only after a threshold number of 
requests have been recorded at the data site. 

• Plain caching: Simply store a local copy on the requesting node. 
• Caching plus cascading replication: The requester caches files locally and the 

server periodically identifies popular files to propagate down the network 
hierarchy. 

• Fast spread: Requested files are stored at each node along the path from server to 
client. 

  
The results of the study indicate that among the six replication/caching strategies, 

cascading and fast spread provide the best overall performance, where performance is 
measured as savings in latency and bandwidth consumption. The distinction between 
the two strategies is that fast spread works well in a network where users exhibit total 
randomness in accessing data. Cascading is the best option when access patterns 
exhibit geographical locality.  
 

3 Calculating Storage Capacity 

The data-grid capacity planner will take two main inputs: (1) the network topology, 
which specifies how the storage nodes are connected, and (2) a synthetic trace, which 
simulates requests for data. Based on these two inputs, it simulates the requests on the 
topology, tracking the storage usage at each node, according to a replication strategy. 
The main goal of the tool is to calculate the maximum storage capacity needed at each 
storage node after all the requests were processed. The output is a table detailing 
storage consumption for the nodes.  

The requests will determine the data to be copied from the source to one or more 
nodes, according to the replication strategy. We propose the following scheme to 
characterize the requests: 
• The source nodes, in which data is generated and from which it is disseminated, 

are determined initially. This information is provided by the user, who also 
determines the size of the data initially placed in each node and a number of tags to 
identify portions of each data. Each tag is associated with a size as well. 

• Another parameter provided by the user is the lifetime of each request, which 
represents the time interval during which data should be useful for the destination 



 

node. This information could be a constant value or generated uniformly within a 
range provided by the user. 

• Each request will have a source node, a destination node, a tag, and a lifetime. 
 

The algorithm for calculating the capacity is shown below. After the initial data is 
assigned to each source node, as determined by the user, and each source node has its 
current capacity updated, the algorithm starts processing the requests. A request will 
identify a source, a tag, a destination, and a lifetime. According to the replication 
strategy, the algorithm will decide which nodes need to receive the data. Note that, 
together, the source and the tag identify a piece of data, which should not be 
replicated in a node. In each node, a piece of data is identified by the source node, the 
tag, and the lifetime of the request. If a piece of data is supposed to be copied to a 
node, which already has that particular piece of data, the copying is avoided, and the 
lifetime of the data is updated to reflect the latest request. 
 
Calculate_Capacity ( ) 
begin 
 for each node i 
  max_capacity of i = curr_capacity of i = initial capacity of i 
 for each request for data <s, tag> from s to d, with lifetime l and timestamp ts 
  eliminate old data from nodes, according to ts 
  update curr_capacity for the nodes which had data eliminated 
  for each node k receiving a copy of the data 
   if node k already has data <s, tag> 
    update the lifetime for <s, tag> in node k  
   else 
    update curr_capacity of k 
    if (curr_capacity of k > max_capacity of k) 
     max_capacity of k = curr_capacity of k 
   end if 
  end for 
 end for 
end 
 
  

The input and output values for the algorithm are described in the sub-sections 
below. 

3.1 Inputs 

Network Topology 
The network topology is read from a file. Each line in the file represents a node in the 
network, and is described by the node’s neighbors and the associated cost between the 
node and each neighbor.  Data centers can be identified by specifying, in a separate 
file, the tags and those tags’ corresponding sizes.   
 
 
 



 

Traffic Trace File 
A synthetic trace for data requests represents the workload of a given topology.  We 
use a traffic simulation tool, Flexible Optical Network Traffic Simulator (FONTS) 
[7], to generate a trace of data requests that simulates on-demand and advance-
reservation requests with different stochastic characteristics. FONTS is based on a 
stochastic model that incorporates a variety of variables to model data transfer 
behavior of applications requiring sustained bandwidth. FONTS can be used to model 
bulk data transfer within the grid infrastructure, and thus is suitable for our use. 
Though the program allows the user to fine-tune numerous simulation parameters, we 
are interested in configuring the request type (advanced-reservation or on-demand), 
source node, and destination node. The user simply generates a trace with FONTS, 
and that trace can be passed directly to the capacity planner for interpretation. 

 
Replication Strategy 
As the results in [8] show that only two of the six proposed replication/caching 
strategies demonstrate practical viability, for the moment, the capacity planner just 
considers these two replicating options: cascading with caching and fast spread. 

3.2 Outputs 

The storage-capacity planner produces as output a table summarizing storage 
consumption in the network.  Specifically, the report shows the number of requests 
serviced and the initial, maximum, and current capacity at each node.   

4 Experiments 

Our storage-capacity planner enables a study of the effect of different data replication 
strategies on storage consumption.  It is hypothesized that data networks replicating 
with fast-spread will consume more resources than networks using cascading with 
caching.  In particular, as network size increases, data in fast-spread networks 
distribute more quickly and therefore the overall capacity to accommodate the rapid 
distribution will quickly outgrow that of cascading networks. 

An experiment was designed to test the hypothesis.  The experiment uses a 
topology typical of grids—the ring with chords.  The topological variables in the 
experiment include: the size of the network, measured by the total number of nodes, 
and the degree of interconnectedness, measured by the number of chords.  The 
number of nodes in the networks studied ranged from 2 to 20 nodes.  The networks 
were also determined by the interconnectivity parameter, where the 2- to 10-chord 
networks were simulated.  The chords were randomly placed.  A sample 10-node ring 
with 5 chords as used in the experiment is shown in Fig. 1.   

As for the input traffic traces, advanced reservation requests can be generated with 
FONTS.  Relevant configurable variables for the FONTS traces include a uniform 
distribution for the source and destination of a request and the number of switching 
nodes (to match the topology under study).  The final and most important variable is 



 

the replication strategy used, either fast-spread or cascading with caching.  Results 
from the simulations can be used to quantify either the substantiation or contradiction 
of the hypothesis.   Graphs should also be plotted to visualize potential trends from 
the collected data that otherwise might have been overlooked in the hypothesis. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 – 10-node ring with 5 chords. 
 

The storage-capacity planner output is a table detailing the initial, current, and 
maximum storage resources consumed at each node in the network during the 
simulation.  We aggregate the results into a succinct and meaningful mathematical 
value so that the simulated network configurations can be easily compared to each 
other. That mathematical value is obtained by averaging the maximum storage 
consumed, which provides a useful index for evaluating the overall distribution of 
maximum resources utilized.  The calculated indices are plotted as average capacity 
versus the number of nodes in the simulated network.  The number of chords is also 
varied and plotted.  A representative set of these experiments is shown in Fig. 2 to 
Fig. 6.   

   

 
 

Fig. 2 – Ring with no chords. 
 
 



 

 
 

Fig. 3 – Ring with 2 chords. 
 

 
 

Fig. 4 – Ring with 4 chords. 
 

 
 

Fig. 5 – Ring with 8 chords.  



 

 
 

Fig. 6 – Ring with 10 chords. 
 
 

The trends observed in the graphs confirm the hypothesis—that is, fast-spread 
replication on average consumes more storage resources than cascading with caching.  
With increasing network size, the storage utilization gap between the two replication 
strategies widens.  The results correspond to the intuition that, if we more readily 
replicate, then the overall storage spending increases accordingly.  When there are 
more nodes in the network, since the fast-spread replication algorithm distributes data 
to nearly all the nodes, the average storage usage shows a relatively uniform 
distribution.  However, the more conservative cascading algorithm replicates only 
after a predetermined threshold number of requests have been reached.  As network 
size increases, a smaller fraction of the nodes in the network will contain replicated 
data.  Therefore, with an increasing network size, the average storage utilization 
shows a decreasing (somewhat linear) trend.  The fast-spread’s somewhat constant 
average capacity, together with cascading’s decreasing average capacity, explains the 
widening gap in resource utilization between the two replication strategies. 

An unanticipated result is the overlapping capacity indices between the replication 
strategies when there are approximately five to nine nodes in the network.  The 
observed trend sharpens with an increased interconnectivity.  This finding provides 
valuable insight for data-grid designers, because it mitigates the often complicated 
tradeoff between time (data access speed) and space (storage resources).  If the 
network is relatively small, such that there are no more than ten nodes, and some 
interconnectivity exists, then the tradeoff is unnecessary.  Fast-spread data replication 
will consume on average the same amount of capacity as cascading while providing 
low access latency.  However, as the number of nodes increases, the network designer 
must more carefully consider the time and space tradeoff.  If access speed is critical, 
we must endure the increased storage consumption for low latency access.  If the 
budget for storage resources is restricted, then use cascading replication to conserve 
capacity.  There exists also demand for relatively low latency, but with a limited 
storage budget.  Such a scenario requires an average capacity that lies somewhere 
between that of fast-spread and cascading, which may be achieved by a combination 
of the two replication strategies.  



 

5 Conclusion 

Data replication has been explored as a performance-tuning parameter for data grids, 
wherein two replication strategies (fast-spread and cascading with caching) have been 
identified to effectively reduce access latency or bandwidth consumption.  A storage-
capacity planner was developed to help data-grid designers better gauge the cost (in 
terms of storage resources) for fast-spread and cascading replication.  An experiment 
was designed to estimate capacity consumption of the two replication strategies on 
ring networks.  The results of the experiment coincided with the intuition that fast-
spread networks consume more resources than cascading networks.  The time and 
space tradeoff in network design was discussed, and a hypothesis was made that 
certain scenarios may require the use of both replication strategies in order to achieve 
good latency with moderate, or limited, storage resource funds.  As future work, this 
feature can be incorporated into the storage-capacity planner, and a new experiment 
conducted to verify if a network combining both replication strategies would indeed 
yield the expected capacity consumption. 
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