Abstract
In a bipartite max-min LP, we are given a bipartite graph \(\mathcal{G} = (V \cup I \cup K, E)\), where each agent v ∈ V is adjacent to exactly one constraint i ∈ I and exactly one objective k ∈ K. Each agent v controls a variable x
v
. For each i ∈ I we have a nonnegative linear constraint on the variables of adjacent agents. For each k ∈ K we have a nonnegative linear objective function of the variables of adjacent agents. The task is to maximise the minimum of the objective functions. We study local algorithms where each agent v must choose x
v
based on input within its constant-radius neighbourhood in . We show that for every ε> 0 there exists a local algorithm achieving the approximation ratio Δ
I
(1 − 1/Δ
K
) + ε. We also show that this result is the best possible – no local algorithm can achieve the approximation ratio Δ
I
(1 − 1/Δ
K
). Here Δ
I
is the maximum degree of a vertex i ∈ I, and Δ
K
is the maximum degree of a vertex k ∈ K. As a methodological contribution, we introduce the technique of graph unfolding for the design of local approximation algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995)
Floréen, P., Hassinen, M., Kaski, P., Suomela, J.: Local approximation algorithms for a class of 0/1 max-min linear programs (manuscript, 2008) arXiv:0806.0282 [cs.DC]
Floréen, P., Kaski, P., Musto, T., Suomela, J.: Approximating max-min linear programs with local algorithms. In: Proc. 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Miami, FL, USA. IEEE, Piscataway (2008)
Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)
Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th Annual ACM Symposium on Theory of Computing (STOC), Los Angeles, CA, USA, pp. 82–93. ACM Press, New York (1980)
Papadimitriou, C.H., Yannakakis, M.: Linear programming without the matrix. In: Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), San Diego, CA, USA, pp. 121–129. ACM Press, New York (1993)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Miami, FL, USA, pp. 980–989. ACM Press, New York (2006)
Lynch, N.A.: A hundred impossibility proofs for distributed computing. In: Proc. 8th Annual ACM Symposium on Principles of Distributed Computing (PODC), Edmonton, Canada, pp. 1–28. ACM Press, New York (1989)
Kuhn, F., Moscibroda, T.: Distributed approximation of capacitated dominating sets. In: Proc. 19th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), San Diego, CA, USA, pp. 161–170. ACM Press, New York (2007)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: Proc. 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), Las Vegas, NV, USA, pp. 60–68. ACM Press, New York (2005)
Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)
Lazebnik, F., Ustimenko, V.A.: Explicit construction of graphs with an arbitrary large girth and of large size. Discrete Applied Mathematics 60(1–3), 275–284 (1995)
Hoory, S.: On Graphs of High Girth. PhD thesis, Hebrew University, Jerusalem (March 2002)
McKay, B.D., Wormald, N.C., Wysocka, B.: Short cycles in random regular graphs. Electronic Journal of Combinatorics 11(1), R66 (2004)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), St. John’s, Newfoundland, Canada, pp. 300–309. ACM Press, New York (2004)
Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces: Theory and Applications. John Wiley & Sons, Ltd., Chichester (1987)
Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207. Springer, New York (2004)
Hocking, J.G., Young, G.S.: Topology. Addison-Wesley, Reading (1961)
Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Upper Saddle River (2000)
Amit, A., Linial, N., Matoušek, J., Rozenman, E.: Random lifts of graphs. In: Proc 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Washington, DC, USA, pp. 883–894. Society for Industrial and Applied Mathematics, Philadelphia (2001)
Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 475–486. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Floréen, P., Hassinen, M., Kaski, P., Suomela, J. (2008). Tight Local Approximation Results for Max-Min Linear Programs. In: Fekete, S.P. (eds) Algorithmic Aspects of Wireless Sensor Networks. ALGOSENSORS 2008. Lecture Notes in Computer Science, vol 5389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92862-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-92862-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92861-4
Online ISBN: 978-3-540-92862-1
eBook Packages: Computer ScienceComputer Science (R0)