Skip to main content

Gesture Recognition Based on Elastic Deformation Energies

  • Conference paper
Gesture-Based Human-Computer Interaction and Simulation (GW 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5085))

Included in the following conference series:

Abstract

We present a method for recognizing gesture motions based on elastic deformable shapes and curvature templates. Gestures are modeled using a spline curve representation that is enhanced with elastic properties: the entire spline or any of its parts may stretch or bend. The energy required to transform a gesture into a given template gives an estimation of the similarity between the two. We demonstrate the results of our gesture classifier with a video-based acquisition approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cerney, M.M., Vance, J.M.: Gesture recognition in virtual environments: A review and framework for future development. Iowa State, TR ISUHCI-2005-01 (2005)

    Google Scholar 

  2. Nielsen, M., Moeslund, T., Storring, M., Granum, E.: A procedure for developing intuitive and ergonomic gesture interfaces for HCI. In: Proc. 5th Int. Workshop on Gesture and Sign Language based HCI, Genova, Italy (2003)

    Google Scholar 

  3. Jaimes, A., Sebe, N.: Multimodal human computer interaction: a survey. In: Proc. of IEEE Int. Workshop on HCI, Beijing, China, pp. 1–15 (2005)

    Google Scholar 

  4. Watson, R.: A survey of gesture recognition techniques. TR TCD-CS-93-11, Trinity College Dublin (1993)

    Google Scholar 

  5. Sebastian, T.B., Klein, P.N., Kimia, B.B.: On Aligning Curves. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 116–125 (2003)

    Article  Google Scholar 

  6. Cohen, I., Ayache, N., Sulger, P.: Tracking Points on Deformable Objects Using Curvature Information. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 458–466. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  7. Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the similarity of deformable shapes. Vision Research 38, 2365–2385 (1998)

    Article  Google Scholar 

  8. Azencott, R., Coldefy, F., Younes, L.: A distance for elastic matching in object recognition. In: Proc. 13th Int. Conf. on Pattern Recognition, pp. 687–691 (1996)

    Google Scholar 

  9. LaViola, J.: A survey of hand posture and gesture recognition techniques and technology. TR CS-99-11, Brown University (1999)

    Google Scholar 

  10. Pavlovic, V., Sharma, R., Huang, T.: Visual interpretation of hand gestures for human-computer interaction A review. IEEE Trans. on PAMI 19(7) (1997)

    Google Scholar 

  11. Dorner, B: Chasing the colour glove: Visual hand tracking. Master’s thesis, Simon Fraser University (1994)

    Google Scholar 

  12. Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. Cambridge Research Laboratory, TR 98/11 (1998)

    Google Scholar 

  13. Lee, J.Y., Yoo, S.I.: An elliptical boundary model for skin color detection. In: Proc. Int. Conf. on Imaging Science, Systems and Technology, Las Vegas, USA (2002)

    Google Scholar 

  14. Shi, J., Tomasi, C.: Good features to track. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Seattle (1994)

    Google Scholar 

  15. Kolsch, M., Turk, M.: Fast 2d hand tracking with flocks of features and multi-cue integration. In: Proc. IEEE Workshop on Real-Time Vision for HCI (2004)

    Google Scholar 

  16. Chang, J.S., Kim, E.Y., Jung, K., Kim, H.J.: Real time hand tracking based on active contour model. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 999–1006. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Wilson, A., Bobick, A.: Realtime online adaptive gesture recognition. In: Proc. ICPR 2000 (2000)

    Google Scholar 

  18. Hong, P., Turk, M., Huang, T.S.: Constructing finite state machines for fast gesture recognition. In: Proc. 15th ICPR Barcelona, Spain, vol. 3, pp. 691–694 (2000)

    Google Scholar 

  19. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal.Mach. Intell. 23(3), 257–267 (2001)

    Article  Google Scholar 

  20. Fonseca, M.J., Pimentel, C., Jorge, J.A.: CALI: An Online Scribble Recognizer for Calligraphic Interfaces. AAAI Sketch Understanding, 51–58 (2002)

    Google Scholar 

  21. Martin, J., Hall, D., Crowley, J.L.: Statistical gesture recognition through modelling of parameter trajectories. In: 3rd Gesture Workshop, France (1999)

    Google Scholar 

  22. Mokhtarian, F., Abbasi, S.: Shape Similarity Retrieval under Affine Transforms. Pattern Recognition 35(1), 31–41 (2002)

    Article  MATH  Google Scholar 

  23. Deriche, R., Faugeras, O.: 2-D curve matching using high curvature points: application tostereo vision. In: Proc. 10th Int. Conf. on Pattern Recognition (1990)

    Google Scholar 

  24. Femiani, J.C., Razdan, A., Farin, G.: Curve Shapes: Comparison and Alignment. TPAMI (November 2004)

    Google Scholar 

  25. Gatzke, T., Grimm, C., Garland, M., Zelinka, S.: Curvature Maps For Local Shape Comparison. In: Proc. Int. Conf. on Shape Modeling and Applications (SMI) (2005)

    Google Scholar 

  26. Hershberger, J., Snoeyink, J.: Speeding Up the Douglas-Peucker Line-Simplification Algorithm. In: Proc. of 5th Symposium on Data Handling, pp. 134–143 (1992)

    Google Scholar 

  27. Catmull, E., Rom, R.: A class of local interpolating splines. In: Barnhill, R.E., Reisenfeld, R.F. (eds.) Computer Aided Geometric Design. Academic Press, London (1974)

    Google Scholar 

  28. Do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  29. Kosevich, A.M., Lifshitz, E.M., Landau, L.D., Pitaevskii, L.P.: Theory of Elasticity, 3rd edn., Butterworth-Heinemann (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vatavu, RD., Grisoni, L., Pentiuc, SG. (2009). Gesture Recognition Based on Elastic Deformation Energies. In: Sales Dias, M., Gibet, S., Wanderley, M.M., Bastos, R. (eds) Gesture-Based Human-Computer Interaction and Simulation. GW 2007. Lecture Notes in Computer Science(), vol 5085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92865-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92865-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92864-5

  • Online ISBN: 978-3-540-92865-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics