Skip to main content

Personalized News Video Recommendation

  • Conference paper
Advances in Multimedia Modeling (MMM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5371))

Included in the following conference series:

Abstract

In this paper, a novel framework is developed to support personalized news video recommendation. First, multi-modal information sources for news videos are seamlessly integrated and synchronized to achieve more reliable news topic detection, and the contexts between different news topics are extracted automatically. Second, topic network and hyperbolic visualization are seamlessly integrated to support interactive navigation and exploration of large-scale collections of news videos at the topic level, so that users can gain deep insights of large-scale collections of news videos at the first glance. In such interactive topic network navigation and exploration process, users’ personal background knowledge can be exploited for selecting news topics of interest interactively, building up their mental models of news needs precisely and formulating their queries easily by selecting the visible news topics on the topic network directly. Our system can further recommend the relevant web news, the new search directions, and the most relevant news videos according to their importance and representativeness scores. Our experiments on large-scale collections of news videos have provided very positive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marchionini, G.: Information seeking in electronic environments. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Yang, B., Mei, T., Hua, X.-S., Yang, L., Yang, S.-Q., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: ACM CIVR 2007, pp. 73–80 (2007)

    Google Scholar 

  3. Wise, J.A., Thomas, J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In: IEEE InfoVis 1995, pp. 51–58 (1995)

    Google Scholar 

  4. Swan, R.C., Allan, J.: TimeMine: visualizing automatically constructed timelines. In: ACM SIGIR (2000)

    Google Scholar 

  5. Weskamp, M.: “Newsmap”, http://www.marumushi.com/newsmap/index.cfm

  6. Havre, S., Hetzler, B., Whitney, P., Nowell, L.: ThemeRiver: Visualizing thematic changes in large document collections. IEEE Trans. on Visualization and Computer Graphics 8(1), 9–20 (2002)

    Article  Google Scholar 

  7. Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Large-scale new video classification and hyperbolic visualization. In: IEEE VAST 2007, pp. 107–114 (2007)

    Google Scholar 

  8. Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Exploring large-scale video news via interactive visualization. In: IEEE VAST 2006, pp. 75–82 (2006)

    Google Scholar 

  9. Lai, W., Hua, X.-S., Ma, W.-Y.: Towards content-based relevance ranking for video search. In: ACM Multimedia, pp. 627–630 (2006)

    Google Scholar 

  10. Teevan, J., Dumais, S., Horvitz, E.: Personalized search via automated analysis of interests and activities. In: ACM SIGIR (2005)

    Google Scholar 

  11. Wactlar, H., Hauptmann, A., Gong, Y., Christel, M.: Lessons learned from the creation and deployment of a terabyte digital video library. IEEE Computer 32(2), 66–73 (1999)

    Article  Google Scholar 

  12. Christel, M.G., Yang, R.: Merging stryboard strategies and automatic retrieval for improving interactive video search. In: ACM CIVR 2007(2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, H., Fan, J., Keim, D.A., Satoh, S. (2009). Personalized News Video Recommendation. In: Huet, B., Smeaton, A., Mayer-Patel, K., Avrithis, Y. (eds) Advances in Multimedia Modeling . MMM 2009. Lecture Notes in Computer Science, vol 5371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92892-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92892-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92891-1

  • Online ISBN: 978-3-540-92892-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics