Abstract
We present recent studies on cellular automata (CAs) viewed as discrete dynamical systems. In the first part, we illustrate the relations between two important notions: subshift attractors and signal subshifts, measure attractors and particle weight functions. The second part of the chapter considers some operations on the space of one-dimensional CA configurations, namely, shifting and lifting, showing that they conserve many dynamical properties while reducing complexity. The final part reports recent investigations on two-dimensional CA. In particular, we report a construction (slicing construction) that allows us to see a two-dimensional CA as a one-dimensional one and to lift some one-dimensional results to the two-dimensional case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acerbi L, Dennunzio A, Formenti E (2007) Shifting and lifting of cellular automata. In: Third conference on computability in Europe (CiE 2007), Lecture notes in computer science, vol 4497. Springer, Siena, Italy, pp 1–10
Acerbi L, Dennunzio A, Formenti E (2009) Conservation of some dynamical properties for operations on cellular automata. Theor Comput Sci 410(38–40):3685–3693. http://dx.doi.org/10.1016/j.tcs.2009.05.004; http://dblp.uni-trier.de
Akin E (1991) The general topology of dynamical systems. American Mathematical Society, Providence, RI
Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J Comput Syst Sci 6:448–464
Bernardi V, Durand B, Formenti E, Kari J (2005) A new dimension sensitive property for cellular automata. Theor Comput Sci 345:235–247
Blanchard F, Maass A (1997) Dynamical properties of expansive one-sided cellular automata. Isr J Math 99:149–174
Blanchard F, Tisseur P (2000) Some properties of cellular automata with equicontinuity points. Ann Inst Henri Poincaré, Probabilité et Statistiques 36:569–582
Boyle M, Kitchens B (1999) Periodic points for cellular automata. Indagat Math 10:483–493
Cattaneo G, Finelli M, Margara L (2000) Investigating topological chaos by elementary cellular automata dynamics. Theor Comput Sci 244:219–241
Cattaneo G, Dennunzio A, Margara L (2002) Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundam Inf 52:39–80
Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comput Sci 325:249–271
Cattaneo G, Dennunzio A, Formenti E, Provillard J (2009) Non-uniform cellular automata. In: Horia Dediu A, Armand-Mihai Ionescu, Martín-Vide C (eds) Proceedings of third international conference on language and automata theory and applications (LATA 2009), 2–8 April 2009. Lecture notes in computer science. Springer, vol 5457, pp 302–313. http://dx.doi.org/10.1007/978-3-642-00982-2_26; conf/lata/2009; http://dblp.uni-trier.de; http://dx.doi.org/10.1007/978-3-642-00982-2; http://dblp.uni-trier.de doi:978-3-642-00981-5
Cervelle J, Dennunzio A, Formenti E (2008) Chaotic behavior of cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Berlin, Germany
Chaudhuri P, Chowdhury D, Nandi S, Chattopadhyay S (1997) Additive cellular automata theory and applications, vol 1. IEEE Press, Mountain View, CA
Chopard B (2012) Cellular automata and lattice Boltzmann modeling of physical systems. Handbook of natural computing. Springer, Heidelberg, Germany
de Sá PG, Maes C (1992) The Gacs-Kurdyumov-Levin automaton revisited. J Stat Phys 67(3/4):507–522
Dennunzio A, Formenti E (2008) Decidable properties of 2D cellular automata. In: Twelfth conference on developments in language theory (DLT 2008), Lecture notes in computer science, vol 5257. Springer, New York, pp 264–275
Dennunzio A, Formenti E (2009) 2D cellular automata: new constructions and dynamics, 410(38–40):3685–3693
Dennunzio A, Guillon P, Masson B (2008) Stable dynamics of sand automata. In: Fifth IFIP conference on theoretical computer science. TCS 2008, Milan, Italy, September, 8–10, 2008, vol 273, IFIP, Int. Fed. Inf. Process. Springer, Heidelberg, Germany, pp 157–179
Dennunzio A, Di Lena P, Formenti E, Margara L (2009a) On the directional dynamics of additive cellular automata. Theor Comput Sci 410(47–49):4823–4833. http://dx.doi.org/10.1016/j.tcs.2009.06.023; http://dblp.uni-trier.de
Dennunzio A, Formenti E, Weiss M (2009b) 2D cellular automata: expansivity and decidability issues. CoRR, abs/0906.0857 http://arxiv.org/abs/0906.0857; http://dblp.uni-trier.de
Dennunzio A, Guillon P, Masson B (2009c) Sand automata as cellular automata. Theor Comput Sci 410(38–40):3962–3974. http://dx.doi.org/10.1016/j.tcs.2009.06.016; http://dblp.uni-trier.de
Di Lena P (2006) Decidable properties for regular cellular automata. In: Fourth IFIP conference on theoretical computer science. TCS 2006, Santiago, Chile, August, 23–24, 2006, IFIP, Int. Fed. Inf. Process. vol 209. Springer, pp 185–196
Di Lena P, Margara L (2008) Computational complexity of dynamical systems: the case of cellular automata. Inf Comput 206:1104–1116
Di Lena P, Margara L (2009) Undecidable properties of limit set dynamics of cellular automata. In: Albers S, Marion J-Y (eds) Proceedings of 26th international symposium on theoretical aspects of computer science (STACS 2009), 26–28 February 2009, Freiburg, Germany, vol 3. pp 337–347. http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1819; conf/stacs/2009; http://dblp.uni-trier.de
Durand B (1993) Global properties of 2D cellular automata: some complexity results. In: MFCS, Lecture notes in computer science, vol 711. Springer, Berlin, Germany, pp 433–441
Durand B (1998) Global properties of cellular automata. In: Goles E, Martinez S (eds) Cellular automata and complex systems. Kluwer, Dordrecht, The Netherlands
Farina F, Dennunzio A (2008) A predator-prey cellular automaton with parasitic interactions and environmental effects. Fundam Inf 83:337–353
Formenti E, Grange A (2003) Number conserving cellular automata II: dynamics. Theor Comput Sci 304(1–3):269–290
Formenti E, Kůrka P (2007) Subshift attractors of cellular automata. Nonlinearity 20:105–117
Formenti E, Kůrka P (2009) Dynamics of cellular automata in non-compact spaces. In: Robert A. Meyers (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany, pp 2232–2242. http://dx.doi.org/10.1007/978-0-387-30440-3_138; reference/complexity/2009; http://dblp.uni-trier.de
Formenti E, Kůrka P, Zahradnik O (2010) A search algorithm for subshift attractors of cellular automata. Theory Comput Syst 46(3):479–498. http://dx.doi.org/10.1007/s00224-009-9230-6; http://dblp.uni-trier.de
Gacs P (2001) Reliable cellular automata with self-organization. J Stat Phys 103(1/2):45–267
Gacs P, Kurdyumov GL, Levin LA (1978) One-dimensional uniform arrays that wash out finite islands. Peredachi Informatiki 14:92–98
Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375
Hurley M (1990) Attractors in cellular automata. Ergod Th Dynam Syst 10:131–140
Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48:149–182
Kari J (2008) Tiling problem and undecidability in cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany
Kitchens BP (1998) Symbolic dynamics. Springer, Berlin, Germany
Kůrka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergod Th Dynam Syst 17:417–433
Kůrka P (2003a) Cellular automata with vanishing particles. Fundam Inf 58:1–19
Kůrka P (2003b) Topological and symbolic dynamics, Cours spécialisés, vol 11. Société Mathématique de France, Paris
Kůrka P (2005) On the measure attractor of a cellular automaton. Discrete Continuous Dyn Syst 2005 (suppl):524–535
Kůrka P (2007) Cellular automata with infinite number of subshift attractors. Complex Syst 17(3):219–230
Kůrka P (2008) Topological dynamics of one-dimensional cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany
Kůrka P, Maass A (2000) Limit sets of cellular automata associated to probability measures. J Stat Phys 100(5/6):1031–1047
Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge
Maruoka A, Kimura M (1976) Conditions for injectivity of global maps for tessellation automata. Inf Control 32:158–162
Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Physica D 75:361–391
Moore EF (1962) Machine models of self-reproduction. Proc Symp Appl Math 14:13–33
Myhill J (1963) The converse to Moore’s Garden-of-Eden theorem. Proc Am Math Soc 14:685–686
Nasu M (1995) Textile systems for endomorphisms and automorphisms of the shift, Memoires of the American Mathematical Society, vol 114. American Mathematical Society, Providence, RI
Pivato M (2008) The ergodic theory of cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany
Sablik M (2008) Directional dynamics for cellular automata: a sensitivity to the initial conditions approach. Theor Comput Sci 400:1–18
Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indagat Math 4:203–210
Shereshevsky MA, Afraimovich VS (1992) Bipermutative cellular automata are topologically conjugate to the one-sided Bernoulli shift. Random Comput Dyn 1:91–98
Theyssier G, Sablik M (2008) Topological dynamics of 2D cellular automata. In: Computability in Europe (CIE’08), Lecture notes in computer science, vol 5028, pp 523–532
Wolfram S (1986) Theory and applications of cellular automata. World Scientific, Singapore
Acknowledgments
The research was supported by the Research Program CTS MSM 0021620845, by the Interlink/MIUR project “Cellular Automata: Topological Properties, Chaos and Associated Formal Languages,” by the ANR Blanc “Projet Sycomore” and by the PRIN/MIUR project “Mathematical aspects and forthcoming applications of automata and formal languages.”
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this entry
Cite this entry
Dennunzio, A., Formenti, E., Kůrka, P. (2012). Cellular Automata Dynamical Systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-92910-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92909-3
Online ISBN: 978-3-540-92910-9
eBook Packages: Computer ScienceReference Module Computer Science and Engineering