Skip to main content

Algorithmic Tools on Cellular Automata

  • Reference work entry
Handbook of Natural Computing

Abstract

This chapter is dedicated to classic tools and methods involved in cellular transformations and constructions of signals and of functions by means of signals, which will be used in subsequent chapters. The term “signal” is widely used in the field of cellular automata (CA). But, as it arises from different levels of understanding, a general definition is difficult to formalize. This chapter deals with a particular notion of signal, which is a basic and efficient tool in cellular algorithmics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Balzer R (1966) Studies concerning minimal time solutions to the firing squad synchronization problem. Ph.D. thesis, Carnegie Institute of Technology

    Google Scholar 

  • Balzer R (1967) An 8-states minimal time solution to the firing squad synchronization problem. Inform Control 10:22–42

    Article  Google Scholar 

  • Čulik K (1989) Variations of the firing squad synchronization problem. Inform Process Lett 30:153–157

    MathSciNet  MATH  Google Scholar 

  • Čulik K, Dube S (1993) L-systems and mutually recursive function systems. Acta Inform 30:279–302

    Article  MathSciNet  MATH  Google Scholar 

  • Čulik K, Karhumäki J (1983) On the Ehrenfeucht conjecture for DOL languages. ITA 17(3):205–230

    MATH  Google Scholar 

  • Delorme M, Mazoyer J (1996) Languages recognition and cellular automata. In: Almeida J, Gomez GMS, Silva PV (eds) World Scientific, Singapore, pp 85–100

    Google Scholar 

  • Delorme M, Mazoyer J (2002a) Reconnaissance parallèle des languages rationnels sur automates cellulaires plans. Theor Comput Sci 281:251–289

    Article  MathSciNet  MATH  Google Scholar 

  • Delorme M, Mazoyer J (2002b) Signals on cellular automata. In: Adamatzky A (ed) Springer, London, pp 231–274

    Google Scholar 

  • Delorme M, Mazoyer J (2004) Real-time recognition of languages on a two-dimensional archimedean thread. Theor Comput Sci 322(2):335–354

    Article  MathSciNet  MATH  Google Scholar 

  • Delorme M, Mazoyer J, Tougne L (1999) Discrete parabolas and circles on 2D cellular automata. Theor Comput Sci 218(2):347–417

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher PC (1965) Generation of primes by a one dimensional real time iterative array. J ACM 12:388–394

    Article  Google Scholar 

  • Gruska J, Salvatore L, Torre M, Parente N (2006) Different time solutions for the firing squad synchronization problem. Theor Inform Appl 40(2):177–206

    Article  MathSciNet  MATH  Google Scholar 

  • Heen O (1996) Economie de ressources sur automates cellulaires. Ph.D. thesis, Université Paris Diderot. In French

    Google Scholar 

  • Kari J (1994) Rice's theorem for limit sets of cellular automata. Theor Comp Sci 127(2):227–254

    Article  MathSciNet  Google Scholar 

  • Mazoyer J (1987) A six states minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238

    Article  MathSciNet  MATH  Google Scholar 

  • Mazoyer J (1989a) An overview on the firing squad synchronization problem. In: Choffrut C (ed) Automata networks, Lecture notes in computer science. Springer, Heidelberg

    Google Scholar 

  • Mazoyer J (1989b) Solutions au problème de la synchronisation d'une ligne de fusiliers. Habilitation à diriger des recherches (1989). In French

    Google Scholar 

  • Mazoyer J (1992) Entrées et sorties sur lignes d'automates. In: Cosnard MNM, Robert Y (eds) Algorithmique parallèle, Masson, Paris, pp 47–64. In French

    Google Scholar 

  • Mazoyer J (1999) Computations on cellular automata. In: Delorme M, Mazoyer J (eds) Springer-Verlag, London, pp 77–118

    Google Scholar 

  • Mazoyer J, Reimen N (1992) A linear speed-up theorem for cellular automata. Theor Comput Sci 101:59–98

    Article  MathSciNet  MATH  Google Scholar 

  • Mazoyer J, Terrier V (1999) Signals in one-dimensional cellular automata. Theor Comput Sci 217(1):53–80

    Article  MathSciNet  MATH  Google Scholar 

  • Ollinger N (2002) Automates cellulaires: structures. Ph.D. thesis, Ecole Normale Supérieure de Lyon. In French

    Google Scholar 

  • Rapaport I (1998) Ordre induit sur les automates cellulaires par l'opération de regroupement. Ph.D. thesis, Ecole Normale Supérieure de Lyon

    Google Scholar 

  • Richard G (2008) Systèmes de particules et collisions discrètes dans les automates cellulaires. Ph.D. thesis, Aix-Marseille Université. In French

    Google Scholar 

  • Romani F (1976) Cellular automata synchronization. Inform Sci 10:299–318

    MATH  Google Scholar 

  • Sutner K (1997) Linear cellular automata and Fisher automaton. Parallel Comput 23(11):1613–1634

    Article  MathSciNet  Google Scholar 

  • Szwerinski H (1982) Time optimal solution of the firing squad synchronization problem for n-dimensional rectangles with the general at any position. Theor Comput Sci 19:305–320

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (1991) Temps réel sur automates cellulaires. Ph.D. thesis, Université Lyon 1. In French

    Google Scholar 

  • Terrier V (2006) Closure properties of cellular automata. Theor Comput Sci 352(1):97–107

    Article  MathSciNet  MATH  Google Scholar 

  • Theyssier G (2005) Automates cellulaires: un modèle de complexité. Ph.D. thesis, Ecole Normale Supérieure de Lyon. In French

    Google Scholar 

  • Ulam S (1957) The Scottish book: a collection of problems. Los Alamos

    Google Scholar 

  • Vaskhavsky VI, Marakhovsky VB, Peschansky VA (1969) Synchronization of interacting automata. Math Syst Theory 14:212–230

    Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Waksman A (1996) An optimum solution to the firing squad synchronization problem. Inform Control 9:66–78

    Article  MathSciNet  MATH  Google Scholar 

  • Yunès JB (2008) Goto's construction and Pascal's triangle: new insights in cellular automata. In: Proceeding of JAC08. Uzès, France, pp 195–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marianne Delorme or Jacques Mazoyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Delorme, M., Mazoyer, J. (2012). Algorithmic Tools on Cellular Automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_3

Download citation

Publish with us

Policies and ethics